本研究展示了贫困减除干预对早期儿童大脑活动的因果影响。来自"婴儿早期年份"研究(一项随机对照试验)的数据表明,向低收入家庭提供可预期的、每月无条件现金转移可能对婴儿大脑活动产生因果影响。在经济资源增加的情况下,儿童的体验发生了改变,他们的大脑活动也适应了这些体验。研究表明,由此产生的大脑活动模式与后续认知技能的发展有关。本文发表在PNAS杂志。
摘要
早期儿童贫困是导致较低学业成就、收入减少和更差健康状况的风险因素,并且与大脑结构和功能的差异有关。但是,贫困是否直接导致神经发育的差异,还是仅仅与导致这些差异的因素相关,目前尚不清楚。在此,我们报告了贫困减除干预对生命第一年大脑活动影响的因果估计。我们从"婴儿早期年份"研究的一个子样本中获取数据,该研究招募了1,000对来自不同背景的低收入母婴对。在分娩后不久,母亲们被随机分配接受每月大额或名义上的无条件现金赠予。在儿童约1岁时,使用静息脑电图(EEG)在儿童家中评估婴儿大脑活动(样本量n=435)。我们假设,与低额现金赠予组的婴儿相比,高额现金赠予组的婴儿在中高频段会表现出更大的脑电图功率,而在低频段则表现出较低的功率。实际上,高额现金赠予组的婴儿确实在高频段显示出更大的功率。效应大小与许多可扩展的教育干预措施相似,尽管估计的显著性会随分析规范的不同而变化。总之,通过严格的随机设计,我们提供了证据表明,在儿童生命的第一年向经历贫困的母亲提供每月无条件现金转移可能改变婴儿的大脑活动。这种改变反映了神经可塑性和环境适应,并呈现出一种与后续认知技能发展相关的模式。
正文:
长期以来,研究发现早期儿童贫困与较低的学业成就、教育水平和成年后收入存在关联。此外,从早期儿童期到青春期,更高的家庭收入往往与语言、记忆力、自我调节能力和社会情感处理能力的评估得分更高相关。同时,贫困与支持这些能力的大脑区域的结构发育和功能活动也存在相关性。例如,更高的家庭收入与更大的大脑皮层表面积相关,特别是在支持儿童语言和执行功能的区域。这种关联在最经济困难的家庭中最为显著,这表明对于经济困难儿童来说,家庭收入的增加可能与大脑结构的差异有更强的联系,相比其更富裕的同龄人。
经济劣势还与脑电活动的差异有关,这是由脑电图(EEG)测量的大脑功能的一个关键方面。脑电图从两个主要维度测量大脑活动:频率和功率。"频率"指的是在大脑中以不同速率发生的振荡活动。神经科学家传统上将连续的频率谱分为多个频段。其中一些频段代表较低频率(较慢)的振荡(如θ频段),一些则代表频率谱中中高部分的较高频率(较快)大脑活动(如α频段、β频段和γ频段)。所有个体的大脑都在整个频率谱上存在活动。"功率"指的是在头皮上测量的某个频段中的大脑活动量,广泛反映了潜在大脑的电活动。功率在不同频段之间和个体之间都存在差异。"绝对功率"指在某个频率(或某个频段内)测量的大脑活动量。"相对功率"则将绝对功率表示为所有频段功率总和的分数。
儿童期的脑电图大脑活动表现出特定的发育模式。随着儿童从新生儿期发育到儿童中期,他们的大脑在低频率部分的功率趋于降低,而在中高频率部分的功率则趋于增加。这种模式的个体差异,特别是绝对功率的差异,与儿童的认知和行为结果有关。例如,中高频(即α、β和γ频段)的更高绝对功率与更高的语言、认知和社会情感得分相关,而更高的绝对或相对低频(即θ频段)功率则与行为、注意力或学习问题的发展相关。
根据脑电图测量,在出生时,家庭收入似乎与大脑活动无关。然而,一些研究发现,家庭收入很快开始预示着上述神经发育模式的差异。具体而言,几项小样本研究表明,在生命最初几年内,与来自高收入家庭的儿童相比,来自低收入家庭的儿童平均表现出更多的低频(即theta频段)脑电图频带功率,以及更少的中高频(即alpha、beta和gamma频段)频带功率。在面临其他形式早期逆境的儿童中也发现了类似的模式,即更多的低频带功率和更少的中高频带功率。在其中一些研究中,这些差异似乎会持续到整个童年期和青春期早期。当然,这些一般模式掩盖了相当大的异质性;并非所有面临贫困或其他形式逆境的儿童都会表现出这些神经发育差异。
神经可塑性,即儿童大脑会适应其环境背景的概念,被认为是这些差异产生的一条途径。也就是说,发育中的大脑的结构和功能会对不同的经历做出适应性反应。因此,大脑活动可能是早期不利经历影响后续儿童发展结果的一种机制。
尽管有关联性证据将收入与早期儿童认知发展联系起来,但目前尚不清楚贫困是否在生命早期就导致了发展差异。支持因果关系的证据来自严格的准实验研究,这些研究将家庭收入的增加与更高的学业成就和教育水平,以及更好的身心健康联系起来。另一方面,个体及其环境的许多其他特征也与这类儿童结果有关。需要仔细的实验操控来区分这些不同的解释。
"婴儿早期年份"研究(BFY)是早期儿童期减贫的首个随机对照试验,旨在探讨减贫是否会导致儿童大脑发展的变化。基于先前经济研究显示早期儿童家庭收入的相对适度差异与更好的学业成就相关的发现,BFY从四个地理位置不同的美国大都市区招募了1,000名低收入母亲,将她们随机分配接受每月333美元的大额现金赠予(称为"高额现金赠予组")或每月20美元的名义现金赠予("低额现金赠予组"),持续到其子女生命最初几年。这些现金赠予以无条件现金转移的形式通过借记卡提供;参与的母亲被告知可以随意使用这笔钱,没有任何限制。高额和低额现金赠予组之间每月313美元的差额累计为每年3,756美元。在此,我们报告这些无条件现金转移对1岁婴儿大脑活动的差异性影响。我们预先注册了分析计划,并假设与低额现金赠予组的母亲的婴儿相比,随机分配到高额现金赠予组的母亲的婴儿会表现出更大的中高频(即alpha、beta、gamma)功率和降低的低频(即theta)功率。
材料与方法
参与者
自2018年5月开始的13个月期间内,BFY研究招募了1,000对母婴对。研究在美国四个大都市区的医院产后病房招募母亲:纽约市、大新奥尔良都会区、大奥马哈都会区和双子城(明尼阿波利斯和圣保罗)都会区。在分娩后不久,40%的母亲被随机选择接受每月333美元的大额现金赠予(高额现金赠予组),其余60%接受每月20美元的名义现金赠予(低额现金赠予组),持续到其子女生命最初几年。随机分配在整个招募期间持续进行。在招募时,告知母亲们每月现金赠予将持续40个月,研究团队将在接下来的3年内每年跟进,评估儿童发展和家庭生活情况。随后,现金赠予延长了12个月,持续到儿童52个月龄,计划的跟进时间也至少延长到4年期。在启动研究之前,研究团队获得了州或地方官员的批准,确保参与者不会因为现金赠予而失去大多数公共福利的资格。哥伦比亚大学师范学院、加州大学欧文分校和纽约州精神病研究所的机构审查委员会批准了这项研究。经过培训的访谈员通过电子同意书形式收集知情同意,该同意书可以当面或通过电话向参与者宣读(同意书收集方式与母亲问卷调查的管理方式一致)。有关资格标准、研究设计和基线数据的更多信息,请参见https://www.babysfirstyears.com、Noble等人(引文40)和跨大学政治与社会研究联盟(ICPSR)数据库(引文55)。
本研究聚焦于在1岁访视期间收集数据的婴儿(平均年龄=12.92个月,标准差=1.89)。最初,这些1岁访视是在家庭中进行的。然而,由于新冠疫情和对参与者及访谈员安全的考虑,面对面数据收集于2020年3月14日暂停,此时大约三分之二的招募婴儿已达到12个月龄。此时,问卷数据收集方式从面对面(n=605)转为电话(n=326)。所有需要面对面评估的1岁测量都在此时暂停,包括婴儿大脑活动的测量。总共有931位母亲最终完成了1岁问卷(完成率93%;完整的问卷信息可在https://www.babysfirstyears.com获取),但只有605位在家中接受了访谈,使得他们的婴儿有可能进行基于脑电图的数据收集。
鉴于本研究关注婴儿大脑活动,我们的主要分析仅限于在疫情开始前完成面对面脑电图数据收集且数据可用的435个家庭(平均年龄=12.79个月,标准差=1.47)(参见补充资料SI1的CONSORT流程图;补充资料SI5和SI8有关于疫情前样本研究发现对全样本推广性的更多信息;以及补充资料SI8和SI10有关于可获得全样本数据的母亲报告的婴儿发展里程碑信息)。
脑电图数据收集
为评估大脑活动,研究使用移动系统在家中收集脑电图数据。在数据收集开始前,通过一系列试点访视和焦点小组评估了移动脑电图的实用性、可行性和文化适当性[有关试点和访谈员培训的完整详情,请参见Troller-Renfree等人(56)]。在此试点过程之后,培训了一组访谈员进行家庭脑电图收集。
使用配备Enobio 20放大器的20通道Neuroelectrics帽采集脑电图(Neuroelectrics公司)。采样率为500赫兹,数据在线参考到放置在或靠近乳突骨的DRL/CMS参考配置。在记录过程中,婴儿坐在其看护人的膝盖上,观看适合婴儿的无言语视频,或观察泡泡或婴儿玩具。记录最长持续7分钟,目标是记录至少5分钟无伪迹的数据。数据由不知道参与者分组情况的数据处理人员进行离线分析(有关脑电图数据处理和分析的信息,请参见补充资料SI2、SI3和SI9)。
在疫情开始前完成1岁访视的605名参与者中,577名母亲同意进行脑电图数据收集(同意率95.4%)。这些同意的母亲中,共有142名婴儿未能提供可用的脑电图记录,原因包括婴儿烦躁(n=62)、记录期间过多伪迹(n=52)、技术问题(n=16)、帽子佩戴不当(n=9)和访谈员错误(n=3)。最终,获得435名婴儿的可用数据进行分析(占同意脑电图收集参与者的75.4%)。图2中的热图显示没有任何主要伪迹(如剩余的眨眼)。
预注册和统计分析
按照其随机对照试验研究设计,BFY预先注册了数据收集和分析计划。与我们的预注册一致,并考虑到高额和低额现金赠予组家庭几乎普遍接受了我们的现金赠予,使用简单回归框架估计ITT差异(编者注:Intent-to-treat (ITT,意向治疗) 分析是指在随机对照试验中,按照最初的随机分组对所有参与者进行分析,而不考虑他们是否完全遵从了研究方案,这种方法可以避免选择性偏差,更好地反映干预在实际情况下的效果)。所有模型都使用稳健标准误进行估计,并在没有和有基线人口统计学儿童和家庭特征的情况下估计ITT(意向治疗分析)差异,以提高我们估计的精确度。
结果
我们记录并分析了435名婴儿的静息态大脑活动,这些婴儿的母亲被随机分配接受每月大额现金赠予或名义现金赠予。(有关招募、保留和脑电图数据收集程序的完整描述,包括与面对面数据收集相关的疫情考虑因素,请参见补充资料SI1。)表1列出了参与者基线特征的描述性统计。母亲和婴儿来自不同种族和民族背景,大多数母亲认同为黑人或西班牙裔。按照设计,所有婴儿在出生时都是健康的(补充资料SI1),母亲报告在分娩前一个日历年的平均家庭收入略高于20,000美元。平均而言,现金赠予使高额现金赠予组母亲的年收入增加了约20%。
表1 脑电图样本的特征
数据以平均值(标准差)或百分比表示。儿童年龄和记录片段数是在1岁访视时测量的。所有其他特征均在随机分配前的基线时测量。家庭收入测量是母亲在基线时报告的。这包括低额现金赠予组中的两个离群值(高于平均值3个标准差以上),导致该组家庭收入测量的标准差较大。报告的均值差异P值未经调整。有关经场地调整的P值和基线测量的正交性联合检验,请参见补充资料表SI1.1。
为了比较高额和低额现金赠予组婴儿在1岁时的大脑活动,对四个功率频段(theta、alpha、beta和gamma)的绝对和相对脑电图功率进行了意向性治疗(ITT)分析。(有关脑电图处理的信息请参见补充资料SI2,有关绝对功率与相对功率讨论请参见补充资料SI3,有关预注册和假设的信息请参见补充资料SI4。)表2显示了这些ITT估计值在基线协变量和多重假设检验调整前后的结果。效应量列通过将每个调整后的系数除以435个脑电图样本中低额现金赠予组给定结果测量的标准差来标准化。研究最初设计的统计效力可以检测任何单一假设0.21个标准差的效应量(补充资料SI4)。尽管表1所示的高额和低额现金组之间的基线平衡差异相对较小,但我们注意到当模型中添加协变量时,一些ITT(意向治疗)估计值会发生变化。
补充材料节选:
SI2. 脑电图数据处理和分析
使用EEGLAB工具箱、MATLAB和MADE流程的低密度版本(称为miniMADE流程)对脑电图进行分析。数据经过0.3赫兹高通滤波和50赫兹低通滤波。然后,将数据分割成1秒的时间段,时间段之间有50%的重叠。对每个时间段进行基线校正到该时间段的平均电压。为去除眼部伪迹,对两个额叶通道(FP1,FP2)应用电压阈值筛选(±250μV)。如果两个额叶电极在某个时间段内超过±250μV的电压阈值,则该时间段被移除。对于剩余通道,使用三个标准识别每个时间段中含有伪迹的通道:电压阈值(±250μV)、平坦通道阈值(至少半个时间段内范围<1微伏)和跳变通道阈值(样本间增加超过50微伏)。最后,数据重新参考到T7和T8的平均值。
预处理后,应用阈值以确保每位参与者在功率分解前保留足够的无伪迹数据。首先,与之前研究一致,要求至少80%(20个中的16个)电极为任何给定时间段提供可用数据。其次,计算和检查分半信度,选择20个时间段的截止值,使每个频带至少具有良好(>0.8)的分半信度。排除少于16个无伪迹电极的时间段和少于20个无伪迹时间段的参与者(有关参与者排除的更多信息见SI1中的CONSORT图)。数据清理完成后,每位参与者的平均时间段数为286.5(低额现金赠予组:均值=288.2,标准差=183.7;高额现金赠予组:均值=284.3,标准差=189.2)。
对分段数据应用1秒汉宁窗的快速傅里叶变换(FFT)(见SI9查看功率谱对数转换后的结果)。与其他婴儿研究一致,计算了theta(3-5赫兹)、alpha(6-9赫兹)、beta(13-19赫兹)和gamma频段(21-45赫兹)的绝对谱功率(μV²)(见图1查看单赫兹区间的组间差异[z分数])。此外,通过将一个频带内的绝对功率(如theta)除以所有频带(theta、alpha、beta和gamma)的总绝对功率来计算相对功率。分析代码可在https://github.com/ChildDevLab获取。
SI3. 绝对功率与相对功率的差异
如正文所述,"绝对功率"指在头皮上测量的大脑活动。绝对功率通常在整个频率谱上测量,可以是不同的单个频率区间,或在某个频带内的单个频率平均值。"相对功率"指一个频带中的电压占所有频带总功率的比例。
基于脑电图功率谱的1/f形状,正如预期,本研究报告显示theta频带的绝对功率大于alpha、beta和gamma频带的绝对功率(见表2)。也就是说,theta功率占总功率的比例大于其他任何频带。由于低频和高频频带之间这种量级的差异——以及因为相对功率是一个频带对总功率的比例——相对功率对低频带与高频带的差异可能更敏感。在我们的研究中,两组之间在绝对theta功率上没有观察到主要差异。此外,由于低频和高频频带的绝对值呈正相关,我们可能预期每个中高频带中相对功率的标准化组间差异幅度会更小,正如正文所报告的。
我们还注意到,在将社会经济地位与大脑活动联系起来的文献中,收入与绝对功率的联系比与相对功率的联系更常见。虽然一些研究显示收入与绝对功率有关联,但与相对功率无关,我们未发现任何研究显示相反的模式。同样,将大脑活动与语言、认知和行为结果联系起来的文献也更常检查绝对功率。然而,一些研究发现这些结果与绝对和相对功率都有关联,或仅与相对功率有关。结果的大小根据所检查的功率类型而不同并不罕见——特别是当绝对功率值的个体间变异较大时。就我们的研究而言,我们的发现普遍表明,"婴儿早期年份"减贫干预对中高频绝对功率的影响比对相对功率的影响更大。然而,由于过去将收入与脑电图结果联系起来的相关文献在功率类型、频带和所检查的脑区方面不一致,需要进一步研究和复制。
表2现金赠予对脑电图功率的治疗效应
OLS表示普通最小二乘法。效应量(第5列)通过将协变量调整后的治疗效应(第4列)除以脑电图样本低额现金组的标准差计算得出。同时报告了未调整的P值(第6列)和预注册的Westfall-Young调整P值(第7列,用于调整多重假设检验)。对于Westfall-Young调整,绝对功率的四个频带(theta、alpha、beta、gamma)被放入一个族,相对功率的四个频带被放入第二个族。这些P值与包含场地水平固定效应和协变量的回归中的治疗系数和效应量相关联。协变量调整模型包括以下来自BFY招募时基线调查的母亲自报协变量:母亲年龄、母亲已完成学历、家庭收入、净资产、母亲总体健康状况、母亲心理健康、母亲种族和民族、婚姻状况、家庭成年人数量、母亲其他子女数量、孕期吸烟、孕期饮酒、父亲是否与母亲同住、儿童性别、出生体重、出生胎龄。模型还控制了访谈时儿童年龄(月)和可用记录片段总数。协变量缺失数据使用脑电图分析样本的平均值进行插补。相对功率在儿童水平计算。OLS模型的稳健标准误在括号中给出(第5和6列)。第1和2列的标准差在括号中给出。
就绝对功率而言,高额现金赠予组在三个中高频带(alpha、beta和gamma)表现出更高的功率,但在低频theta频带中没有(表2上行)。按效应量排序,beta频带的脑电图功率组间差异最大(效应量=0.26,beta=0.414,P=0.02,使用包含协变量和场地固定效应的模型),其次是gamma频带(效应量=0.23,beta=0.221,P=0.04)。当作为独立测量时,这两个P值都低于0.05阈值,但在Westfall-Young多重检验调整后则不然。alpha频带的组功率差异(效应量=0.17,beta=0.720,P=0.07)较小且处于统计显著性边缘。theta频带中发现小且统计上不显著的绝对功率差异(效应量=0.02,beta=0.396,P=0.83)。(参见补充资料SI5中类似的加权分析模式,该分析调整了435个脑电图样本和931个在1岁时接受访谈的BFY完整母婴对样本之间的人口统计差异。)
相对功率的差异在质上相似但普遍小于绝对功率观察到的差异,高额现金赠予组在alpha、beta和gamma频带显示出更大的中高频相对功率。这些差异未达到常规统计显著性水平(表2下行;关于绝对和相对功率的更完整讨论,见补充资料SI3)。相比之下,低额现金赠予组的相对theta功率更大,效应量为0.21,差异处于统计显著性边缘(补充资料SI4)。
图1和图2展示了高额现金赠予组和低额现金赠予组在频谱和头皮分布上的绝对功率脑活动差异。具体来说,图1A分别显示了高额和低额现金赠予组婴儿在整个功率谱上的绝对脑电图功率Z分数,而图1B显示了功率谱上相应的组间Z分数差异。图2显示了四个功率频带中每个频带内高额和低额现金赠予组的脑电图绝对功率在头皮上分布的地形热图。
图1(A)分别展示了高额和低额现金赠予组的标准化平均绝对脑电图功率。高额现金赠予组的平均值用黑色实线表示,低额现金赠予组的平均值用灰色实线表示。功率谱以连续方式显示,x轴为单赫兹区间,y轴为标准化绝对功率,并标出了预先注册的theta、alpha、beta和gamma频带的边界,表明结果模式在整个频谱上是一致的,且少数单赫兹区间并未过度影响表2所示的结果。由于功率值使用全部435个样本的平均值和标准差进行了标准化(z分数),两条线呈镜像关系。此图仅用于说明目的,未包含协变量调整;统计检验是在给定频带(如theta)内对单赫兹区间值的聚合进行的。
(B)用黑色实线表示高额与低额现金赠予组之间标准化脑电图绝对功率(z分数)的差异。功率谱以连续方式显示,x轴为单赫兹区间,y轴为标准化的组间差异,并标出了预先注册的theta、alpha、beta和gamma频带的边界,表明结果模式在整个频谱上是一致的,且少数单赫兹区间并未过度影响表2所示的结果。此图仅用于说明目的,未包含协变量调整;统计检验是在给定频带(如theta)内对单赫兹区间值的聚合进行的,结果显示在表2中。
图2 地形热图显示了高额现金赠予组(左)和低额现金赠予组(右)的theta、alpha、beta和gamma绝对功率在头皮上的分布。较暖色表示各个频带中的功率较大。热图还显示没有任何主要伪迹(如残留的眨眼)。在补充资料SI6中探讨了区域差异。此外,由于脑电图数据参考了T7和T8电极的平均值,时间数据仅出于可视化目的从周围电极估算。
图1中绘制的功率数据基于完整脑电图样本在48个单赫兹区间内进行了标准化(z分数),并标出了theta、alpha、beta和gamma频带的边界。考虑到标准化,图1A中两条线之间的垂直距离反映了高额和低额现金赠予组婴儿之间的标准化差异。这些z分数的差异显示在图1B中。在所有高于6赫兹的中高频单赫兹区间中,高额现金赠予组的绝对功率估计都超过低额现金赠予组的绝对功率:即包括频谱中alpha、beta和gamma部分的全部。
图2通过显示两组在每个频带中功率在头皮上的分布强化了这些差异。较暖色表示各个频带中的功率较大,说明与低额现金赠予组相比,高额现金赠予组似乎显示出更多的beta和gamma功率。探索性事后区域分析与图2所示的组间差异大体一致。在Westfall-Young调整前后,高额现金赠予组都显示出更多的额叶绝对beta功率(效应量=0.32,beta=0.46,P未调整=0.01,P调整后=0.02);更多的中央绝对beta功率(效应量=0.28,beta=0.59,P未调整=0.02,P调整后=0.05);以及更多的额叶绝对gamma功率(效应量=0.26,beta=0.238,P未调整=0.02,P调整后=0.04)(补充资料SI6)。
基于我们对功率谱所有中高频部分呈现正向差异的假设,我们对所有预先注册的中高频功率频带进行了功率聚合。这种总结指数方法是社会科学中常用的数据简化技术,作为我们预注册的Westfall-Young多重比较调整的事后补充。虽然这种方法忽略了脑电图频带的生物学和功能意义,但它能让我们对单个聚合的中高频指数分数进行统计ITT差异估计(补充资料SI7)。与我们基于频带的结果一致,我们发现高额现金赠予组的婴儿比低额现金赠予组的婴儿具有更多的中高频带绝对功率(效应量=0.25,beta=13.35,P=0.02)(补充资料表SI7.1)。因此,当功率在预注册频带中分析、分解为单赫兹区间、在区域内检查或跨频带聚合时,干预对中高频绝对功率的效应方向和大致大小都是相似的。
讨论
虽然研究发现家庭收入与儿童大脑结构和功能的发展差异有关,但对于在贫困中成长是否导致早期大脑发展的差异,还是贫困仅仅与其他导致早期差异的真正原因相关,存在相当大的争议。在此,通过使用随机对照试验设计,我们通过显示旨在减少贫困的干预似乎导致了儿童大脑功能的变化,且这些变化与随后更高的认知技能相关,为这个相关与因果的争论提供了证据。
具体而言,与母亲被随机分配接受每月名义性无条件现金转移的婴儿相比,母亲在其出生时被随机分配接受大额每月无条件现金转移的婴儿在alpha、beta和gamma频带表现出更大的中高频绝对脑电图功率(效应量=0.17至0.26)。相比之下,我们的发现并未为高额现金赠予组在theta频带会表现出更少的低频功率这一假设提供一致的支持。
三个中高频功率频带的影响估计都是一致正向的,高额现金赠予组显示出比低额现金赠予组更高的功率值(图1和表2)。就beta和gamma频带的绝对功率而言,效应量的大小与研究设计能够检测独立假设的效应量一致(补充资料SI4)。值得注意的是,这两个最高频带中现金赠予的效应估计在多重比较调整前具有统计显著性,但在调整后则不显著。
为了研究这些发现的稳健性,我们考虑了三种额外的证据。首先,当将中高频(alpha、beta和gamma)部分的频谱分解为单赫兹区间时,我们发现高额现金赠予组的婴儿在从6到49赫兹的整个频谱范围内都显示出比低额现金赠予组的婴儿更高的功率(图1)。其次,驱动这些影响的神经区域(图2和补充资料SI6)与先前将收入与大脑活动联系起来的相关性研究,以及将大脑活动与语言和认知结果联系起来的研究报告的区域广泛一致。在多重比较调整后,beta和gamma频带中的一些额中央区域效应仍然显著(补充资料表SI6.1)。第三,在事后综合的中高频功率指数上也发现了类似的组间差异,高额现金赠予组的婴儿在这个指数分数上显著高于低额现金赠予组的婴儿(补充资料表S17.1)。但是,虽然我们的大多数证据都指向现金赠予的可能因果影响,但并非所有这里呈现的证据都能在严格的多重比较校正后保持显著,这使得我们无法完全有信心拒绝零假设。因此,显然需要保持谨慎并进行进一步的复制研究。
然而,总的来说,我们判断证据的整体支持这样的结论:给予我们研究中母亲的每月无条件现金转移影响了其婴儿的大脑活动。这一点值得注意,因为我们在高额现金赠予组观察到的神经活动模式与儿童期和青春期更高的语言、认知和社会情感得分相关。此外,在alpha、beta和gamma频带观察到的效应在量级上与其他大规模环境干预报告的效应相似。例如,对747个针对标准化成就结果的教育干预随机对照试验的元分析发现平均效应量为0.16个标准差。
儿童的大脑发展反映了对其实际经历的适应。重要的是,不同的大脑活动模式在不同的环境中可能都具有适应性,正常发育的大脑会适应其经历的环境。在某些情况下,这种可塑性可能带来明显的益处,而在其他情况下,它可能导致发展出适应性但代价高昂的策略,以在稀缺条件下优化生物适应度。在后一种情况下,适应并不一定代表功能障碍或失调,而是对环境的预期和适当反应。
本研究提供了证据,表明在一项旨在增加家庭经济资源的干预实施一年后,婴儿大脑表现出相对短时间尺度的神经可塑性。由于随机设计,这里发现的任何组间大脑活动差异都反映了对相关环境变化的神经适应。也就是说,在更多经济资源的背景下,儿童的经历发生了变化,他们的大脑活动适应了这些经历。然而,我们尚不知道哪些经历参与产生了这些影响。未来的工作将研究受现金赠予影响的潜在机制,包括家庭支出、母亲劳动力市场参与、母亲养育行为和家庭压力,注意到这些途径可能在不同儿童和家庭中以不同方式运作。
局限性
在解释这些结果时应注意几个局限性。首先,婴儿大脑活动的个体差异在时间上的稳定程度尚不清楚。其次,由于疫情,无法在全部1,000个研究样本上收集脑电图数据。虽然招募设计旨在在招募年度内提供可比较的参与者样本,但疫情截断了我们的面对面数据收集工作,大大减少了样本量并降低了我们估计的精确度。这里呈现的结果能在多大程度上推广到完整研究样本尚不清楚(补充资料SI5和SI8)。第三,我们不知道这种减贫干预的神经发育效应是否会转化为儿童技能和行为直接评估的差异。虽然在其他样本中观察到婴儿大脑活动与随后的认知、语言和社会情感功能之间存在关联,但一些研究并未发现婴儿大脑活动能预测随后的技能。BFY研究将继续跟踪这些儿童至少到生命的前4年,以确定治疗对大脑活动的影响是否持续并扩展到儿童认知和行为结果的直接测量。
尽管在统计效力上存在局限性,但这些影响模式来自严格的随机分配研究设计,与假设一致,在量级上与其他可扩展干预对认知结果的效应相似,并且在各种检验中基本保持稳健(补充资料SI4-SI9),这使我们得出结论认为这些发现很重要且不太可能是虚假的。
结论:
目前的结果表明,为生活在贫困中的家庭提供每月无条件现金支持可能影响早期儿童大脑活动,这突出了将儿童发展和福祉置于政策考虑的首要地位的重要性。然而,虽然可能会倾向于得出政策结论,但我们提醒注意,目前的发现仅涉及多年期无条件现金转移干预的前12个月。最近的立法和政策提案以儿童税收抵免的形式为低收入家庭提供收入补充,在早期儿童期提供更高的收入,但没有一项政策会将援助限制在生命的第一年。就我们而言,我们并不认为仅仅12个月的干预可能会产生持久效果,也不认为现金转移政策消除了对直接服务干预的需求,如儿童保健就医、家访或高质量的早期儿童教育。尽管如此,通过在儿童最早期针对家庭,BFY找到了重要证据,表明在儿童大脑对经验特别敏感的时期增加收入的效应。传统上,美国针对低收入家庭的收入转移政策的争论集中在母亲劳动力供给而不是儿童福祉上。我们的发现强调了将讨论重点转移到收入转移政策是否或如何促进儿童发展的重要性。