fNIRS的跨学科视角

功能性近红外光谱(fNIRS)是一种创新且前景广阔的神经影像技术,可用于研究真实环境中的大脑活动。自其近 30 年前问世以来,fNIRS 在硬件、软件和研究应用方面都取得了快速进展,但在这三大领域仍然存在局限性,而当前一些实践方式还会加重神经科学研究社群内部的偏差。本文通过不同终端应用使用者的视角(其中包含 fNIRS 制造商的独到见解),重点关注 fNIRS 的使用情况,并概述在多种学科与受试群体中使用这项技术的挑战。通过回顾在不同研究领域对 fNIRS 的应用,我们识别并讨论了偏差的存在,尤其是由当下 fNIRS 技术限制、样本群体多样性不足,以及渗透于当今研究中的社会偏见所导致的偏差。最后,我们提供了有关在神经科学研究中最小化偏差的相关资源,以及让未来的 fNIRS 使用更加公平、多元、包容的应用议程。本文发表在Frontiers in Integrative Neuroscience杂志。 

1. 引言

     功能性近红外光谱(fNIRS)是一种便携、轻便且多功能的非侵入式脑成像技术,通过光学手段测量血红蛋白浓度的变化来监测大脑活动。它与功能性磁共振成像(fMRI)相似,都依赖大脑中的血流动力学活动作为测量对象。fNIRS 因其便携性、既能捕捉氧合血红蛋白和脱氧血红蛋白的浓度变化(Hoshi and Michael, 2005)、对运动伪迹的耐受度较高,以及运行成本远低于 fMRI(Scarapicchia et al., 2017),而在近年迅速成为一种受欢迎的选择。与脑电图(EEG)相比,fNIRS 与 EEG 互为补充:EEG 监测大脑的电活动变化,而 fNIRS 监测血流变化(Li et al., 2022)。EEG 的时间分辨率更高但空间分辨率较低,而 fNIRS 空间分辨率更好但时间分辨率受血流动力学反应的限制(Li et al., 2022)。EEG 的成本也比 fNIRS 更低,不过由于二者互为补充,许多制造商仍鼓励并支持并行使用这两项技术(关于 EEG 与 fNIRS 的全面对比,见 Li et al., 2022)。

      自 1990 年代开发以来,fNIRS 在硬件和分析技术上已有三十年的发展。Frans Jöbsis 作为光学研究者,发现了利用近红外光谱在过度换气期间监测大脑血流动力学活动的可能性(Chance et al., 1962)。最初的 fNIRS 研究聚焦于脑代谢与一般认知之间的关系(Chance et al., 1992),基于性别与用手习惯(左右利手)的差异(Okada et al., 1993),以及精神障碍对大脑活动的影响(Okada et al., 1994)。早期的 fNIRS 仪器仅能记录单通道(单个光源及单个探测器)数据,如由日本滨松光子学公司(Hamamatsu Photonics)研发的首款单点设备 NIRO-1000(Ferrari and Quaresima, 2012)。此后,fNIRS 技术实现了快速迭代,全球范围内从大型制造商到实验室都在研发新型、可穿戴、高密度的 fNIRS 系统,包括墨西哥(Gorostieta-Esperon and Jiménez-Ángeles, 2019)、日本(Kubo and Kubo, 2015)、欧洲(Piper et al., 2014; Pinti et al., 2015)、中国(Liang et al., 2016)及美国(Ayaz et al., 2013; Tsow et al., 2021)等地。硬件的稳步改进使得研究者能探索以前难以涉及的领域,如需大量身体活动的瑜伽(Dev et al., 2019; Dybvik and Steinert, 2021)、不可预测的户外环境(McKendrick et al., 2016)、以及其他自然情境(Pinti et al., 2018)、人与机器人的交互(Le et al., 2022)以及多主体协作(Czeszumski et al., 2020),并使 fNIRS 得以运用于敏感人群(Arenth et al., 2007)。由于这些系统的轻量化和便携性,fNIRS 成为在多种真实复杂环境中进行非侵入性脑测量的理想工具(Le et al., 2022)。

     然而,fNIRS 的能力越拓展,fNIRS 研究中所包含的偏差也随之增多。为此,我们邀请了来自多个领域(如人机与人机机器人交互、团队科学、软件工程、情感测量和 fMRI/fNIRS 融合研究、以及衰老和损伤研究等)的研究者,讨论他们在研究中对 fNIRS 的独特应用,fNIRS 在硬件与软件方面的问题,以及多样性、公平与包容如何影响他们的研究。本文综合了这些研究者的观点,并回顾了其各自所代表的应用领域,以突出独特的研究问题、挑战及对未来的期望。我们还提供了来自一家 fNIRS 制造商的特殊视角,探讨在满足不同终端用户多样化需求的情况下该领域所面临的挑战与机遇。

     虽然这些研究者来自不同的应用领域,但我们仍看到一些共同趋势:一方面,虽然分析软件与方法已大幅改进,但仍缺乏一种可普遍适用的标准化 fNIRS 方法学,这在一定程度上源自教育资源的匮乏。另一方面,硬件的提升使我们得以在前所未有的场景和样本中开展研究,新型高密度 fNIRS 系统也让全脑测量成为可能(Wang et al., 2021)。然而,即便 fNIRS 技术不断进步,研究社群(特别是在神经科学领域)日益关注所采集数据的多样性不足引发的偏差(Webb et al., 2022)。虽然技术进步使我们有机会探索新的研究空间,但硬件本身在测试深色肤色、深色头发(Kwasa et al., 2022)以及感觉—运动障碍人群(Arenth et al., 2007)时仍存在局限。另外,来自社会的偏见与不当观念也会以多种形式渗透到此类研究当中(Roberts et al., 2020; Bradford et al., 2022),我们将在后文(第 4 节)进一步探讨。

      另一个紧迫且宏观的关注点是,研究者们对于科研实践中的伦理问题,以及在诸多基于 fNIRS 的研究流程中显而易见的偏差(Yücel et al., 2021)反复提及。由于研究样本通常是年轻、白人、大学生,且研究机会分配不均,这些固有的偏差就存在于我们的数据之中(Roberts et al., 2020)。我们同时也检视了社会与个人层面偏见在神经科学研究中的机制,并提出辨识与改进建议。

     下文的结构安排如下:第 2 节将介绍聚焦于本研究团队所覆盖的跨学科应用领域,以及每个领域当前对 fNIRS 的使用方式;第 3 节讨论这些领域的研究者在使用 fNIRS 时的硬件和软件挑战及其影响,也会探讨 fNIRS 研究方法流程中偏差产生的来源,以及这些偏差会如何波及到 fNIRS 系统的最终使用者;第 4 节从一家成熟的 fNIRS 制造商的视角审视当前研究中的挑战与不足;最后在第 5 节总结社区未来在软件、硬件以及偏差方面的需求,以应对当前的诸多挑战。

2. 当下 fNIRS 应用领域概览

      本节将介绍由研究团队所涉及的多样应用领域,并讨论在这些领域中 fNIRS 的现有用法。

2.1 协作与复杂任务环境

      对于研究协作与复杂情境,fNIRS 作为传感器具有广阔前景。与其他神经影像设备相比,fNIRS 更具便携性与灵活性。几十年来,监测、维持和提升协作一直是协作环境与职业领域的核心研究对象,这些环境与职业通常包括但不限于工业组织、军队、航空航天、教育、医院、机器人操作,以及自然灾害应对等,这些场景在社交、技术和物理层面都较为复杂。利用传感器与行为数据,人们可以获取信息以用于课程设计、技术指标制定、团队构成等,从而维持或提升健康、高效或富有成效的协作。fNIRS 在监测协作活动(包括人群内部和人机协作)上展现出了潜力。

2.1.1 协作式问题解决

      协作式问题解决(CPS)指两人或多人协调一致地尝试构建并维持对问题的共同解决方案(Roschelle and Teasley, 1995),被视为 21 世纪的一项核心能力,因为当今世界许多复杂工作越来越多地由团队完成(Graesser et al., 2018)。在已有的理论进展基础上,近年的研究开始借助机器学习(ML)和自然语言处理自动分析 CPS 交互。例如,研究者们利用在 CPS 场景中收集到的多模态数据(如语音 [Pugh et al., 2021]、眼动 [Abitino et al., 2022]、身体动作 [Vrzakova et al., 2020])来自动检测团队使用不同技能的情况(如团队是在构建共享知识还是通过谈判化解分歧;Pugh et al., 2022)。此类研究多采用多模态方法(如语音与身体动作融合),因为多种数据流叠加时可比单一数据流带来更全面的 CPS 过程信息(Vrzakova et al., 2020)。

      随着非侵入式脑成像技术(包括 fNIRS)能测量现实中的面对面互动,研究者们也开始探索社会与协作互动中的大脑信号协调关系。在对这些互动的研究中,“大脑间同步”(interbrain synchrony,IBS)逐渐受到关注,这指的是团队在合作活动中大脑信号在时间维度上出现协调(Hu et al., 2018)。同步反映了个体对他人心理生理、认知、情绪以及行为状态的调谐(Azhari et al., 2019)。尽管对于两人间的 IBS 研究已有一定积累,但它在团队环境中以及个体自身层面仍待深入。近期的研究开始关注 IBS 是否能在团队的“集体表现”中发挥预测作用(Reinero et al., 2021),通过“超扫描”(hyperscanning)——即对两个或更多个体的神经数据同时采集来检测。然而大部分相关研究主要聚焦在教育情境(Bevilacqua et al., 2019; Davidesco et al., 2019; Davidesco, 2020)。这些研究发现,当学生与教师的大脑信号同步时,学习状态和交流更为流畅。另一个研究案例是对相反政治观点者的研究:当他们一起观看相同政治短片时,大脑产生了不同的响应模式(van Baar et al., 2021)。

     多数关于超扫描的研究关注 IBS(如共同注意、人际交往、协调、合作与决策等,Czeszumski et al., 2020),但在这个领域,研究者能做的不止这些。CPS (协作式问题解决)涉及团队解决问题时涌现的一系列过程(如构建共享知识、协商等),这些过程在神经层面的机制很可能差异明显。未来的研究可把 fNIRS 超扫描范式与扎实的 CPS 理论标注结合起来,探究这些不同过程(无论单个大脑内部还是队友之间的大脑之间)的神经活动差异。同时,将 fNIRS 引入 CPS 研究对深化对情感或情绪在协作中的角色理解也很有意义。然而对情感状态的客观测量方法还相对有限,且要调查情感在(无)效 CPS 中的作用也具有挑战。未来可用 fNIRS 结合观察编码与自我报告量表等现有方法,以更细致地呈现团队成员内在状态,从而研究情感在协作过程中的作用。

2.1.2 心理状态检测

     在复杂任务与环境中,对个体心理状态的探究有助于更深入地理解认知过程。fNIRS 让研究者能在高压、高强度场景下观察心理状态,从而更好地了解那些需要高认知负荷的任务。已有研究利用 fNIRS 研究包括飞行模拟中的注意力与参与度(Gateau et al., 2015, 2018; Liu et al., 2021)、驾驶时的精神疲劳(Ahn et al., 2016; Huve et al., 2018)、精神压力对状态分类的影响(Al-Shargie et al., 2015; Al-Shargie, 2019; Katmah et al., 2021),以及走神与视觉注意(Durantin et al., 2015; Murata et al., 2015; Friedman et al., 2018)等。对复杂任务中多种认知状态的深入理解可以推动嵌入在系统中的实时反馈机制:以 fNIRS 数据为输入,根据个体心理状态采取相应措施。例如,有研究团队研发了名为“NeuroDesignScience”的神经反馈系统,可在跨经度飞行中实时获取飞行员的 fNIRS 信号,用以侦测走神状态并在随后重新吸引飞行员注意力(Liu et al., 2021)。随着 fNIRS 在灵活性和可及性上的持续改进,越来越多的实时反馈系统可用于各种职业与场景。

2.1.3 人机交互

     随着人机协作愈发普及,其应用遍及康复、外科手术、及医学行业整体(Raje et al., 2021)、工作中的人机物理互动(Smids et al., 2020),以及服务于认知障碍(Scassellati et al., 2012)和躯体障碍(Van den Heuvel et al., 2016)人群的协作或团队任务[更多人机交互(HRI)相关应用综述见 Howell-Munson et al., 2022; Veling and McGinn, 2021]。理解人们对机器人的看法对改善人机交互至关重要。一项独特的研究方向是考察人们是否以及如何对机器人形成“心智理论”(Theory of Mind)(Pittman et al., 2022)。此类研究利用大脑信号作为对人类如何看待机器人的独立评估方法,并与机器学习等计算工具的预测结果进行对比。

     fNIRS提供了独特的能力来探索人机交互(HRI)的神经关联,并揭示对机器人感知至关重要的心理构念(如心理理论)的潜在机制(Yorgancigil等, 2022)。目前很少有机制能让机器理解人类行为,而fNIRS可能提供一种独特的隐式(即非自我报告)和实时的神经反馈机制。这将为跨多个领域的社交智能机器人的设计和开发提供新的见解。fNIRS是一种有前途的技术,可以实现机器能理解的实时人类反馈,从而影响并最终改进人机交互。这方面的要求解决了当前围绕fNIRS评估的应用、可行性和可靠性的挑战。例如,可以通过实验测试人类如何使用fNIRS感知不同类型的机器人(Kawaguchi等, 2012; Canning和Scheutz, 2013)。由此,可以开发出能预测机器人设计如何被感知的机器学习算法,将其扩展到更多的机器人设计中,然后通过将机器学习预测与作为基线的fNIRS评估进行比较来独立验证。这种组合可能有助于理解与机器人感知相关的人类认知,对于在社交机器人中实现自然交互能力至关重要。这项研究的潜在影响从更好地理解社交机器人和fNIRS能力,延伸到在医疗保健、老年护理、社会援助和教育领域实现更好的社交机器人(Hubbard等, 2021; Kim等, 2021; Pittman等, 2022)。

      在帮助不同社会经济地位人群(如学校和医院等环境)方面,机器人展现出巨大潜能。不过,许多 HRI (人机交互)研究样本通常集中在年轻、白人的大学生,难以代表预期人群(Leichtmann et al., 2022)。样本群体过窄会使研究者难以观察到文化和种族差异对人机交互产生的影响。较低的社会经济地位可能因教育和对该技术缺乏经验而对机器人存在更多顾虑(Su et al., 2022)。而此类对多元样本不足的担忧在协作式问题解决(CPS)领域同样适用:在现有研究中,实验室任务和样本人群通常无法覆盖丰富且多元的现实协作情形。

2.2 特定人群及应用案例

     fNIRS 研究在测量敏感人群的大脑活动方面成绩斐然,包括对损伤康复者、慢性疾病及相关负性情绪者,以及其他内在弱势群体。对这些人群及临床病例的研究带来了新颖发现,也揭示了目前 fNIRS 技术在研究历史上未被充分代表的人群时的局限。

2.2.1 康复

      无论是衰老、损伤、干预,还是它们的组合(如针对脑损伤人群进行干预后),都从对其认知负荷的考察中受益匪浅。研究身体残障或功能缺损者的大脑活动不仅有助于为其设计辅助工具,也能更好理解其病况后遗影响。例如,利用脑机接口进行行走协助的康复工具大有前景(Khan et al., 2018)。能适应个体脑信号或心理状态的辅助系统是另一种将神经技术(如 fNIRS)应用于自适应自动化的实例。

     在此研究方向中的一个具体应用是评估健康老年人经无创脑刺激及工作记忆训练后,其前额叶皮质(PFC)激活的前瞻性变化。接受了工作记忆训练且在工作记忆表现上提升的老年人,在执行工作记忆任务时 PFC 的激活减少,无论他们是否接受了神经刺激(Stephens and Berryhill, 2016)。在此项目中,fNIRS 的应用遇到一大难题:很难为头发浓密或深色的成年受试者获取数据。好在大多数老年人的发际线已有所后移,因此对大部分人成功采集了 PFC 数据,但仍有部分参与者无法采集,这在当时是重大局限。此外,受试者必须保持坐姿,因为那时使用的 fNIRS 系统是推车式(无移动性)。近几年,一些移动式 fNIRS 方法已能够在运动过程中采集数据,这对理解功能性动作的神经基础至关重要。例如,有研究将 fNIRS 与双任务测评(Dual Task Screen, DTS)结合使用,让有无运动相关脑震荡的运动员完成 DTS,后者包括障碍行走、语言流畅度任务、手眼协调任务与心算任务(Aumen et al., 2020)。由于这些任务包含移动,受试者将携带背包式、无线传输数据的 fNIRS 设备。迄今为止,该设备获取了高质量的数据,并能通过管线去除运动伪迹。然而,对于头发较粗或肤色较深的运动员,仍有部分数据丢失,这在一定程度上限制了研究结论的推广性。

2.2.2 fNIRS 的临床应用

     fNIRS 在临床方面同样表现出广泛潜力,包括辅助诊断及监测阿尔茨海默病、精神分裂症、诵读困难、帕金森病、儿童障碍、神经手术后功能障碍、注意障碍等(Rahman et al., 2020)。尽管 fNIRS 在这些领域已有相当收获,但目前还未能在临床使用上占据主流,这很大程度上是因为设备的灵活性导致信号易受干扰而无法保证绝对准确。且 fNIRS 只能提供与大脑血流相关的信息,而无法测量深层皮质结构(Irani et al., 2007)。有研究显示在未来,fNIRS 可能用于探索脑功能,并为临床诊断提供更快、更准确的辅助(Rahman et al., 2020)。然而,目前 fNIRS 仍因时间分辨率滞后且易受运动伪迹与生理伪迹干扰而难以走向真正的临床环境(Chen et al., 2020)。如需更详细的 fNIRS 临床应用综述可参考 Rahman et al. (2020)。

2.2.3 用 fNIRS 及 fMRI 测量大脑中的情感

     情感是大脑功能的基本属性之一,对慢性疾病及疼痛患者的影响尤其显著(Hu and Gruber, 2008)。最近,Čeko et al. (2022) 使用多种负性情感刺激结合 fMRI 并基于预测模型识别大脑对通用及特定类型负性情绪的编码模式,这些模式共同塑造了我们的主观体验。由此项 fMRI 工作产生了更具生态学效度的需求,即需在更具真实感的环境中深入理解情感过程(即“in-the-wild”),以及考虑到慢性病患者群体所面临的独特挑战。

     fNIRS 就是一种极具前景的方案。fMRI 与 fNIRS 都通过血流变化研究大脑活动;当无法使用 fMRI 时,fNIRS 可以在更自然的实验环境中进行,并具有略好一些的时间分辨率。fNIRS 的无创性也更有利于痛感或负性情感严重的人群,他们往往无法在 fMRI 扫描仪中复制真实行为。然而,商用 fNIRS 设备空间分辨率较低,且难以探测更深层次的大脑结构。为让神经影像学研究者们能充分利用这两种方法的互补优势,后续工作计划探索二者信号间的相关性,并尝试根据 fMRI 测到的深层脑活动预测 fNIRS 所测得的皮层(表层)活动(Liu et al., 2015)。这将为 fNIRS 研究者利用 fMRI 优化其大脑数据建模,以及 fMRI 研究者补充高生态效度的 fNIRS 实验奠定基础。然而,由于 fNIRS 无法用于部分特殊人群,对于将 fMRI 与 fNIRS 信号建立联系或对比的相关研究在这些敏感人群中仍存在空白。

2.2.4 神经发育与青少年研究

      fNIRS 的灵活性使发育学研究人员能够研究婴幼儿身上一些尚不清楚的认知过程。基于 fNIRS 的发展研究已有许多突破,下面仅简要提及一些重要发现。多数婴儿神经影像学研究,尤其是基于 fMRI 的研究,需要婴儿在睡眠或镇静状态下进行(Wilcox and Biondi, 2015),而 fNIRS 可用于觉醒、可交互状态的婴儿,从而带来了一些关键发展发现。例如,对婴儿的面部识别(Ichikawa et al., 2019)、语言习得与发育(Quaresima et al., 2012)、视觉与听觉注意(Emberson et al., 2017)、亲子关系(Minagawa et al., 2018)等方面的研究均得益于此。借助 fNIRS,研究者可在更接近真实环境的条件下考察复杂的神经过程。例如,针对双语对神经发育的影响,研究对象涵盖婴儿(Blanco et al., 2021)和儿童(Arredondo et al., 2017)。有研究显示,将英语与西班牙语同时习得的儿童,其前额叶功能组织与仅说英语的儿童有差异(Arredondo et al., 2017)。更多关于 fNIRS 在神经发育领域的综述参见 Wilcox and Biondi (2015) 以及 Azhari et al. (2020)。

     不过,将 fNIRS 用于婴幼儿及儿童时仍存在一些挑战。研究者通常使用国际 10–20 系统将 fNIRS 探头放置在与潜在皮层结构相对应的头皮位置,这在成人中已被验证(Tsuzuki and Dan, 2014),但尚不能简单假设儿童的皮层定位与成人相同(Wilcox and Biondi, 2015)。部分研究者在婴儿特定脑区(额叶、顶叶、颞叶)上进行了皮层结构与 fNIRS 探头的位置配准(Lloyd-Fox et al., 2014b)。另一个难题是婴幼儿的血流动力学反应存在较大差异性,这使研究者难以归纳通用模式;已有研究表明其反应高度依赖实验设计与刺激类型(Issard and Gervain, 2018)。

2.2.5 未被充分研究或边缘化人群

     某些群体如孕妇、婴幼儿、青少年、老年人以及残障人士常因传统神经影像技术的约束(如对运动的严格限制或健康、年龄等因素)而被忽视。此外,传统的神经影像方法如 fMRI 或 PET(正电子发射断层成像)都要求受试者到指定地点进行成像,增加了研究参与的困难。缺乏机动性会令一些经济条件或时间安排不稳定、或缺乏照护资源的人群难以参与研究。

     与 fMRI、PET 相比,fNIRS 由于其可移动性和安全性,很适合对这些未被充分研究的群体进行脑科学研究。第一,fNIRS 已应用于研究孕妇的神经功能(Roos et al., 2011)。许多孕妇对于多次 fMRI 检测持谨慎态度,但对多次 fNIRS 测量神经功能的安全性顾虑相对较少。第二,fNIRS 也可用于婴幼儿群体,与 fMRI 和 EEG 相比,对运动伪迹更不敏感,这让婴幼儿得以处于觉醒并与机器人或父母互动时依然可测(Lloyd-Fox et al., 2010; Wilcox and Biondi, 2015;见第 2.2.4 节更多讨论)。第三,移动式 fNIRS 可减少受试者负担,如使研究可在家中或其它合适地点进行。例如,有研究将 fNIRS 用于观察非洲乡村儿童的大脑发育(Blasi et al., 2019),研究人员将 fNIRS 设备带至乡村的临时站点采集数据。虽然 fNIRS 让以往难以访问或招募的群体有机会被纳入神经影像研究,但在这些环境下收集数据也可能遇到技术难题。曾有研究者在非洲偏远地区开展工作(Lloyd-Fox et al., 2014a; Jasińska and Guei, 2018; Blasi et al., 2019)时报告了包括高温导致大汗及设备过热等问题,因此,尽管 fNIRS 带来了采集更多元数据的可能性,实际环境的选择仍需适宜以保障数据质量。

     残障人士也可从 fNIRS 技术中受益,但在这方面硬件限制仍然存在。例如,在听力障碍及耳蜗植入人群(Cochlear implant,CI)中对 fNIRS 的研究较为活跃(Saliba et al., 2016)。虽然在 CI(耳蜗植入人群) 人群中也能使用 fNIRS,但会面临噪声干扰,因此在设计帽子和布局光源探头时需考虑 CI 的位置(Saliba et al., 2016)。Saliba 等人(2016)就定制了一款不影响 CI 的 fNIRS 帽子。对主要的 fNIRS 供应商而言,这提示其设备设计需要考虑更多残障人群的多样需求。

     认知障碍领域已有大量 fNIRS 研究,其中与自闭症谱系障碍(ASD)相关的工作值得关注。ASD 属于神经发育障碍,目前还有许多神经机制未被阐明(Zhang and Roeyers, 2019)。对于这类人群,fNIRS 的优势之一在于可将研究追溯到很小的年龄(Conti et al., 2022),有助于揭示 ASD 的神经机制。与 fMRI 相比,fNIRS 在此情境下更具优势,因为部分 ASD 患者难以控制过度活跃或耐受封闭的扫描环境和噪音(Zhang and Roeyers, 2019),而 fNIRS 更加安静、低侵入性。不过,很多 ASD 患者也存在感觉-运动障碍(Piek and Dyck, 2004),可能难以或无法长时间佩戴 fNIRS 头套(Su et al., 2021)。采用非接触式、无需戴头套的远程 fNIRS 系统对这类人群非常有价值(Hirshfield and Meier, 2020)。

      历史上被边缘化的人群(如在种族与民族上代表性不足者、以及低社会经济地位者),通常对研究保持警惕乃至拒绝参加。人们也常因潜在风险而拒绝或放弃参与使用此类技术的研究(Scharff et al., 2010)。某些研究机会本身就对这些群体不友好,他们也并不代表一般人群,因此在研究中一直处于缺少关注的地位(Roberts et al., 2020)。

     虽然 fNIRS 本身的可移动性与安全性可以克服一些传统技术中对多样化招募的阻碍,但要解决偏见与不当观念对研究的渗透,仅依靠技术手段远远不够。研究者、伦理审查委员会、科学期刊和资助机构负有共同责任来保证研究过程的公平性,包括鼓励招募边缘化群体并要求报告人口统计学特征(更多建议可见 Webb et al., 2022 的表 1)。

3. 讨论

     通过征集多学科研究者的观点,我们整合了当前在 fNIRS 软件、硬件及未来研究方向上的主要挑战与关切。

3.1 fNIRS 软件的局限

     不同领域研究者普遍认为,初次接触 fNIRS 颇具挑战,原因在于目前的开源教育资源不足,以及数据预处理和分析缺乏统一标准。作为一个社群,我们需共同努力改进公开的教育工具,令对神经成像方法不熟悉的研究者也能清晰入门,并确保这些资源覆盖所有人群。因为分析方法的选择在实验设计阶段就开始,只有充分的教育支持才能指导研究者正确地进行预处理和分析,从而得出有意义的结果。目前出现了若干 fNIRS 数据的预处理和分析软件,但大多仍需要至少中等水平的专业技能。

     在预处理中,可选的滤波和统计方法非常多,但缺乏对何时使用哪种方法的系统指导。研究者必须了解理想的 fNIRS 信号形态,以及何时受运动或生理等伪迹干扰。若不在预处理中纠正,这些伪迹可能导致错误结论。此外,市面上的各种软件包和工具箱让用户很难对比不同处理过程的具体细节。对信号的建模是另一个需要考虑受试者群体特征的环节,例如在用修正的比尔-朗伯定律将光学信号转换为血红蛋白浓度时,需要依据年龄调整差分路径因子(Kamran et al., 2018)。因此,研究者在预处理和分析时必须根据被试群体的特征做相应调整。

     fNIRS 数据分析工具既有开源也有闭源。开源工具往往文档不足,社区与论坛虽然对新人有所帮助,但尚未根本解决问题。近年来,无论是针对不同编程语言的工具(如 MATLAB 平台的 NIRS-SPM [Ye et al., 2009]、Homer [Huppert et al., 2009]、NIRS AnalyzIR Toolbox [Santosa et al., 2018];Python 平台的 MNE-NIRS [Gramfort et al., 2014];或可参考 Almajidy et al., 2019 表 2),都有一些进展。这些工具都可行,但如何选择对新手依然困难。此外,许多研究者也不清楚闭源软件相较于开源工具是否有优势。fNIRS 的分析还要求使用一定的统计学知识,而对很多采用 fNIRS 的跨学科领域而言,这是不熟悉的技能。简言之,虽已有众多资源可帮助研究者获取优质数据并完成数据分析,但对 fNIRS 数据的最佳分析流程仍存在争议。

     另一缺口是实时数据分析及解释能力。未来,人们对于需要适时评估人与智能体/机器人/自动化系统之间的交互并即时调节的需求会增长,这需要超越客观指标的实时机器可读反馈。同时,也需要让实时分析所得到的信息可视化于用户界面,以便个人或团队决策,或者输入至自主虚拟助手以提供沟通或行为建议。要实现这些目标,软件需要能快速、可靠地对 fNIRS 数据进行预处理与分析。

     在极端环境(如航天飞行任务)中,血氧动力学很可能只是诸多生理监测指标之一,因此需要将多模态生理数据与环境数据同步,并建立工作负荷与任务绩效的模型,提供有效反馈。随着在更真实、不可预测的环境中应用的需求增加,软件也需要处理长时间使用传感器而导致的漂移或受试者生理状态变化。因此,系统需能实时评估数据质量并(1)预处理与清洗数据,或(2)给出调整传感器以改善数据质量的建议。

      为提升社区教育,建议研究者协作搭建对 fNIRS 新手友好的教育资源库。当我们在更多环境与情境中对大脑进行研究时,建立一个统一的数据存储仓库与应用场景对应的共享管线将大有裨益。类似 ERP CORE(Kappenman et al., 2021)为 EEG 提供开源资源与示例处理管线的方式,如果能在 fNIRS 社群中搭建这样的在线平台,将对实现 fNIRS 采集与分析的规范化、共享化大有帮助。我们也期待能有统一的 fNIRS 数据处理金标准,让神经成像和非专业编程研究者都能在一个友好的平台中开展数据获取与分享。近来,也有将 fNIRS 数据纳入 BIDS 标准(Gorgolewski et al., 2016)的努力正逐渐推进。

3.2 对 fNIRS 硬件的思考

      虽然当前的 fNIRS 技术与早期单通道设备相比取得了长足进步,但仍对某些人群与场景存在不足与挑战。fNIRS 技术基于光学吸收率差异来监测大脑血流动力学信号(Chen et al., 2020),故在探测深色、浓密头发及深色皮肤时容易出现难题,并且会令神经科学研究中已有的偏差进一步扩大(在第 3.3 节详述)。同时,在明亮的照明或阳光下进行“野外”测试也会因环境光干扰而难以保证数据质量(McKendrick et al., 2016)。

     当下的高端 fNIRS 系统价格不菲,外形在实际操作需求中有时过于笨重,对运动伪迹也缺乏足够鲁棒性(Tsow et al., 2021)。虽然也有一些商用可穿戴式传感器较之实验室级别设备更适于户外环境,但其成本仍然较高,面对极端环境的“磨损”更显脆弱,而且在长时间佩戴时会出现不适与信号可靠性波动(Kyriakou et al., 2019)。一个理想的便携式 fNIRS 设备应该在满足头部全覆盖的光源与探测器数量时,依然保持轻便,并通过无线传输与电脑连接,让用户能长时间舒适佩戴,而且能在运动、出汗、皮肤油脂等干扰下依旧有坚固的性能,并能与例如太空服等其他穿戴装备结合。正如如今的智能手表已有心电图功能(Isakadze and Martin, 2020)。

fNIRS 若要应用于自适应自动化或作为实时反馈,用以调节人与智能体之间的互动,需要硬件技术进一步发展到能提供可靠的可穿戴式数据。fNIRS 系统也应继续支持高密度测量,并与 fMRI、EEG 等兼容,从而发挥多模态互补优势。当前的 fNIRS 主要测量皮层表层活动,无法覆盖更深层脑结构,后者可能需并行 fMRI 才能实现。

3.3. 偏见在 fNIRS 研究中如何发挥作用
      由于在个人、机构和社会层面上普遍存在偏见,必须承认偏见对研究结果的影响,以及对某些群体的排除可能加剧社会中本已存在的不公。神经影像学和 fNIRS 研究中存在多种来源的偏见。第一种来源是内隐偏见(implicit bias)。这是一个微妙的形式,个体往往并未意识到自己的歧视性偏见,并常常因在一个充满偏见的社会中成长所导致的(Stevens and Abernethy, 2018)。例如,研究人员发现,当被试在看到有色人种时,杏仁核活动更强,杏仁核活动往往是恐惧的标志(Cunningham et al., 2004; Lieberman et al., 2005; Ronquillo et al., 2007)。有色人种往往与恐惧反应相联系,因为很多人从小就被教导要基于他人的外表产生恐惧(Stevens and Abernethy, 2018)。内隐偏见的存在会导致意想不到的大脑活动,这凸显了报告人口统计数据(如年龄、性别、种族等)之重要性。研究人员应当正视其工作中可能存在的内隐偏见,减少与个人观念相关的羞耻感,并承认个人偏见可能会影响研究结果。

     外显偏见(explicit bias)是指个体清楚地意识到他们的偏见,通常与羞耻感相关,更具外显偏见的人往往更善于控制他们的反应(Richeson and Shelton, 2003)。Richeson and Shelton (2003) 以及 Richeson and Trawalter (2005) 发现,调节种族偏见会耗费执行功能资源,这正是 fNIRS 研究经常考察的对象。这进一步证明,个人偏见会在研究中渗透到 fNIRS 信号中,即便研究并未有意考察偏见。这再次强调了为何需要承认个人偏见的存在,因为这可能会影响实验结果。

      近年来,人工智能(AI)系统已被证明会产生偏见,甚至出现贬损性的结果,因为用于训练机器学习(ML)算法的数据本身带有偏见,而这也出现在人类神经科学领域中(Parker and Ricard, 2022; Webb et al., 2022)。机器学习的公平性如今是一个蓬勃发展的研究领域,研究人员正试图让团队和数据多元化,以构建更公平、更平等的算法。fNIRS 社群也应当付出类似的努力,因为如果无法让某些群体得到平等代表,则其他群体就会在研究成果中不成比例地受益或被排除,社会偏见也由此加剧。

     由于黑色素(melanin)会影响光的吸收,深色、浓密的头发以及深色皮肤都会对 fNIRS 数据采集产生影响。事实上,在深色皮肤和深色头发的受试者身上收集到的数据经常因为数据质量不佳而被舍弃(Webb et al., 2022),这就造成了一种方法学上的偏见。像智能手表和血氧仪等利用光学检测的常见设备,也面临同样的问题,导致相当大比例的总体人群中,来自重要群体的有效数据被排除在外(Bradford et al., 2022)。这一问题在大多数研究中都存在,因为有色人种在研究中通常被严重低估,包括对总体统计数据(如国家 IQ 数据集)和临床心理学的研究(Sear, 2022; Bradford et al., 2022)。fNIRS 研究人员必须努力为代表性不足的人群开发合适的数据采集技术,例如确保合适的帽子尺寸,使用能够优化探头与皮肤接触的工具等。

     必须认识到,多种群体在 fNIRS 中都处于研究不足的交叉地带。2021 年,美国人口普查局报告称,在该国生活在贫困线以下的人口中,19.5% 为黑人(Creamer et al., 2022)。同一年,该机构报告称在所有生活在贫困线以下的美国残障人士中,这一比例是 25%(Creamer et al., 2022)。其他一些不利因素(如就业状况和教育水平等)也可能导致更高的贫困率。由于参与研究的困难以及其他原因,这些群体在神经影像研究中仍处于研究不足的状态,且往往无法得到许多神经影像技术的支持。

      研究中存在多种偏见渗透的途径(见图 1)。社会上的偏见、想法、观点以及人们的生活经历,都会通过影响宝贵的神经生理数据而渗入实验室环境(例如,对有色人种产生更强的杏仁核反应(Cunningham et al., 2004; Lieberman et al., 2005; Ronquillo et al., 2007),以及维持偏见会消耗执行功能资源(Stevens and Abernethy, 2018))。另一个需要考虑的因素是,社会经济差异会影响对研究的参与(例如,不隶属于教育或研究机构、因缺乏足够的补偿而无法弥补误工损失、在世界某些地区研究机会有限;Choy et al., 2022)。此外,研究人群受限导致的模型结果与技术进步未能适用于所有群体。例如,协作问题求解(CPS)往往只在相似人口特征(同一所大学的本科生)中被观察和测量,未来研究必须在不同人口特征和生活经历的更广泛群体中,研究非典型的 CPS 表现。与此相关的还有“正向偏倚”(positivity bias)和“显著性偏倚”(significance bias),即失败或统计上不显著的结果因各种社会经济原因而不被报道和发表,导致某些干预或测量手段似乎比实际更有效或更准确(Collaboration, 2015; Stanley et al., 2021)。这种情况会对那些研究未取样的群体产生不成比例的影响,因为这些结果和方法会在文献中被普遍化,尽管在不同被试中可能无法复现(Roberts et al., 2020)。要想打破在种族、民族和社会经济方面都高度同质化的研究样本,所有研究人员——包括 fNIRS 领域的研究者——都必须着手并致力于弥合这一数据鸿沟(Dotson and Duarte, 2020)。

图片

图 1. 存在于社会中的偏见源于生活经历与个人信念,并通过影响神经学数据、造成样本量小且缺乏代表性、以及因硬件限制使部分重要样本无法提供数据等方式渗透到实验室环境中。

     我们选择了一部分文献,它们在分析过程中明确考虑了表型差异(Gemignani et al., 2018; Nagels-Coune et al., 2020),或者直接研究了色素头发及肤色对 fNIRS 信号质量的影响(Fang et al., 2018; Bronkhorst et al., 2019)。对这些文献进行更深入的检视(见表 1)验证了头发和肤色都会显著影响大脑成像结果,同时也证明仍有极少数研究会在分析中纳入对这些影响的考虑,或在文献中报告可能影响结果的头发和皮肤特征。虽然这些文献为在深色皮肤和深色头发被试上优化 fNIRS 信号提供了实践建议,但 fNIRS 研究人员仍需在数据分析中考虑表型差异的影响,例如在线性模型中将头发颜色视作固定效应(Gemignani et al., 2018)。

表 1. 文献简要回顾

图片

4. 来自 fNIRS 解决方案创造者的观点
     由于 fNIRS 领域仍在不断成熟,开发 fNIRS 解决方案的研究者面临大量引人注目的机遇以及颇具动力的挑战。从包容性角度出发,我们在此表达我们所认为的、许多研究级 fNIRS 设备制造商所共同面临的挑战和未来方向,特别侧重于当前研究人员所关注的话题。

4.1. 硬件层面的表型偏见
      当典型帽子和探头无法正常使用时,如何优化这些受试者的信号质量就成为硬件开发的重要挑战。技术难点通常出现在深色、浓密、卷曲的发质上,这类发型会显著增加探头到头皮的距离,并且头发会吸收部分信号光(Bradford et al., 2022)。这在研究文献中产生了空白,因为存在文化差异的部分人群无法佩戴典型的 fNIRS 帽子和探头。近来,研究者群体已经提出了一些鼓舞人心的想法,帮助改进文化敏感型的探头和帽子设计以更好地适配这些发型。我们也期待行业在这一领域能持续聚焦并不断取得进展,从而缓解这一关键问题。例如,2022 年 5 月,两位神经科学家在一篇讨论神经科学领域种族偏见的论文中(Parker and Ricard, 2022)也表达了类似担忧。他们在文中呼吁开发新型神经影像设备,以克服当前技术在穿透深色头发和皮肤时的局限。他们倡导开发更适配保护性发型(如辫子或扭发)以及粗发质的 fNIRS 和 EEG 帽子,通过加长探头并扩大帽子尺寸以适配较厚的头发(Louis et al., 2022; Parker and Ricard, 2022)。技术必须发展以适应全球范围内普遍存在的文化与表型差异。fNIRS 制造者必须着力推进这些工作,并且在他们如何使 fNIRS 技术对多元参与者群体更具适配性和可及性方面保持透明。

      随着技术的持续发展,当前一些高端 fNIRS 设备已经具备了在深色头发和深色皮肤等挑战性表型条件下帮助优化信号质量的功能,包括对每个探头的动态范围进行调节,以及更灵敏的光检测技术。然而,要使 fNIRS 能适用于所有发型、发质与发色,依然任重道远。这也是为何近来有多项研究启动,旨在对拥有不同发质和肤色的被试进行系统化性能表征,以更好地了解当前这一问题的现状、确定改进方向并指导进一步的技术发展(Nagels-Coune et al., 2020; Kwasa et al., 2022)。

     另一个相关方面是,不同最终用户在设备设置和故障排查策略方面存在差异。如何向研究人员普及在不同发质和肤色条件下优化信号质量的最佳实践,是提高这些被试成功率的重要一步。我们也将看到在相关培训方面投入更大力度的趋势。

4.2. 分析软件标准化
     虽然 NIRx Aurora fNIRS 软件(NIRx Medical Technologies)是数据采集中最常用的选择之一,但在 fNIRS 数据分析软件上(无论是实时的还是离线的),尚未出现一个被广泛采用且同时对新手友好、具有专业支持,并融合最新先进方法的解决方案。

    Brain Innovation(NIRx Medical Technologies)最近推出的 Satori 软件为数据分析提供了新选择,满足了以上多项需求,但它依旧面临作为新兴软件的挑战,以及当下 fNIRS 领域分析方法仍然多样化带来的困难。与此同时,Satori 专注于离线分析,而来自 Brain Innovation 的另一款软件 Turbo-Satori(Lührs and Goebel, 2017)则主要面向实时应用,如脑机接口。

     虽然已有初步的软件工具,但我们仍需要加强社区参与,并丰富关键的用户反馈,以便在应用层面进一步优化。最终,构建强大的终端用户社群、加大对分析教学以及对软件工具箱进行直接比较的力度,将有助于实现标准化和最佳实践。而在上述商业软件的同时,正如在其他科学领域中已经发展的那样,开源软件与闭源软件在 fNIRS 领域的共存将更好地满足不同用户对功能、专业度和环境的多样化需求。

4.3. 未来方向
     来自庞大终端用户社群的反馈不断推动我们前进,并指引研发方向。在这样的引领下,未来 fNIRS 的目标有很多:便携、稳健、轻便、无线、高密度,可适用于各种人群和环境。

     目前,内置内部增益放大的特殊探测器已在部分特殊使用场景中出现,但它们比不带放大功能的常见探测器更昂贵且体积更大。未来,超灵敏探测器有望以更紧凑的形式广泛进入市场,减少实验设置时间,让更多人能够使用 fNIRS。

     除此之外,目前只有少数研究团队会为他们的每位被试采集精确的探头位置数字化信息。未来,我们或许能在每位被试身上精准获取传感器位置,并与其个体解剖结构进行配准,从而减少不同记录场次、不同被试和不同实验之间的差异。对每位被试的探头位置进行数字化,加之足够高密度的空间采样,也会让研究者更灵活地进行少量个性化位置调整,从而更好地适配多样化的发型。

     减小不同测试场景之间的差异,有助于将 fNIRS 推向新的临床和消费市场。在这些市场中,人们通常不会将不同个体的记录结果进行合并分析。除了更精准地定位探头外,可能还需要多种 fNIRS 技术(包括连续波、时间域和频率域)来解决这些挑战,为在更多场景中的应用铺平道路。随着在新市场的拓展以及产量的提升,研究设备的成本也将进一步下降,从而提高可及性。

     最后,将 fNIRS 与其他神经记录技术(如 EEG、fMRI)相结合往往能产生大于单独应用的总和的效果。多种技术同时使用,可以相互去噪并对结果进行交叉验证。持续推进多种模式的结合以及相关分析方法的标准化,是通往未来通用型 fNIRS 设备的关键挑战。

5. 结论与未来研究议程
5.1. fNIRS 软件与硬件的未来

     研究社区还必须努力为不同实验设计建立通用的预处理与分析流程。虽然已有若干工具箱和程序可提供类似功能,但却鲜有文档解释对于不同数据类型与质量,应当使用何种功能或滤波器。很多工具也很难让人清楚了解每个功能在数据上到底做了什么。这给识别数据中的问题或异常增加了难度。要想使数据处理和分析流程标准化,应该建立一个开源的仓库来存储数据和处理流程,为 fNIRS 新手提供教育资源,并搭建一个研究者可以协作的社区论坛。也应致力于开发能更好地可视化大脑血氧动力学活动的工具(例如,突出显示哪些脑区真正被激活)。

     在今后的 fNIRS 和 fMRI 融合中,要想充分发挥二者的优势,还需要在数据命名和组织,以及处理流程上进一步标准化。尽管 fMRI 社区在这两个方面已有了显著进展(例如引入了 BIDS 格式来统一数据命名和组织,并推动使用具有完善文档与溯源功能的统一预处理流程,如 fMRIprep;Esteban et al., 2019),但 fNIRS 领域似乎还略显滞后。我们希望在这一方面取得进步,并在 fNIRS 数据的开放共享——类似于目前正逐渐成为标准(且常常是必需)的 fMRI 数据共享(例如在 Open Neuro 已有 550 个 fMRI 数据集)——上建立更浓厚的文化。一些旨在团结社区的努力正在进行中,例如组建 fNIRS 协会(Society of fNIRS)(Yücel et al., 2017),以及最近发表的有关鼓励 fNIRS 实践标准化和进一步团结 fNIRS 研究者的文章(Pinti et al., 2019; Yücel et al., 2021; Schroeder et al., 2022)。这些努力可能会共同提升对个人、社会及方法偏见在 fNIRS 研究中影响的关注,并开发相应的工具加以应对。

      虽然 fNIRS 硬件在过去 30 年里快速演变,但仍需继续改进,以实现包容、多元且具信息价值的研究社群。fNIRS 硬件发展的下一步至关重要:我们要意识到当前数据及相应文献中存在的差距,并寻找方法来为通常被边缘化的人群优化信号。为公平的 fNIRS 技术而努力,避免在数据采集时因肤色和发色等身体差异而受到限制,可以最大程度地减少 fNIRS 研究中的方法学偏见。必须正视并解决文献中缺少种族和民族多样化人群的局面。

5.2. 面向未来的应用议程
      软件和硬件的发展对拓展不同应用领域的研究至关重要。各个领域的研究人员都期盼硬件能进一步发展,从而让他们在“真实世界”环境中进行可行性研究,例如在工作场所(Martinez et al., 2022)、户外(McKendrick et al., 2016),甚至在家中(Tsow et al., 2021)进行实验。理解在日常活动(如驾驶)中发挥作用的大脑机制(可通过汽车内的 fNIRS 设置进行研究)将帮助我们发现有关诸如走神和分心等过程的新信息(Ogihara et al., 2022)。在家中即可使用消费级 fNIRS 设备,将显著拓宽 fNIRS 的研究应用领域,让更多人可以接触和参与到神经科学研究中(Tsow et al., 2021)。

     为了让 fNIRS 更具包容性,还需要更多地关注那些无法使用或难以高效使用 fNIRS 的群体,例如戴有人工耳蜗(CI)或存在感知-运动障碍的人群。我们建议定制或可定制的 NIRS 帽子或许能在这方面发挥作用。此外,对于无法佩戴帽子的人群,还应探索远程 fNIRS 的可能性(Hirshfield and Meier, 2020)。

    研究者也希望能以更经济、更便捷的方式将 fNIRS 与兼容的其他模式结合,例如 fMRI 和 EEG。由于二者与 fNIRS 信号高度互补,但往往因缺乏经费或缺少多模式神经监测技术研究的教育资源而难以实现。

5.3. 呼吁正视偏见
     正如本文反复提到的,各研究领域的学者都急需正视并解决研究中的偏见问题。具体而言,为推动神经科学领域的发展,我们必须关注个人偏见和生活经历如何影响神经研究结果,社会和机构层面的偏见又如何阻碍研究进步,以及弱势群体是如何因为缺少对研究机会的了解或研究对他们来说根本无法触及而被排除在外的。任何研究者都可以通过努力拓展招募范围,以获得更具多样性的被试样本来践行这一点,例如与校园团体建立联系,向他们阐明代表性对科学研究的重要性。我们也可参考公共卫生和计算机研究领域在减少偏见方面所作的工作(例如 Ford et al., 2018; Loi, 2021)。伦理委员会和机构审查委员会(IRB)可以要求研究人员记录他们在降低研究偏见方面所做的努力(Kwasa et al., 2022),比如波士顿大学与波士顿医疗中心所使用的“Reducing Implicit and Explicit Bias in Research”表格(Boston University, 2022)。期刊可以通过接收在更多元样本或经修正方法上进行的重复性研究,减少过分追求新颖性的发表偏倚,并在审稿过程中将受试者多样性纳入考量(Roberts et al., 2020)。此外,将这些努力示范给年轻研究人员,有助于让这成为常态,使未来科学更具包容性。硬件变革对于适配敏感人群同样不可或缺,从而让更多人的 fNIRS 数据纳入研究视野。

     总之,通过对多个受用户启发的研究领域的探讨,我们揭示了研究者在 fNIRS 硬件与软件上面临的共同局限,也指出社会中内隐与外显的偏见如何渗透到实验室环境。最后,我们分享了来自 fNIRS 分销商群体的专业观点,以及他们对未来 fNIRS 技术进步与后续研究的展望。fNIRS 研究能否在未来取得成功,将取决于我们是否能够有效解决本文提及的问题,以及研究者是否能积极减少研究中的偏见。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值