之前写了两篇关于复数的文章了:
其中提到复数的发现是源于解一元三次方程:
其实在我们学习路径上,一般也不会碰到解一元三次方程的问题,真正引起我对复数思考的是:
泰勒级数展开的问题(关于这个问题,之前写过“使用泰勒公式进行估算时,在不同点有啥区别?”,更初级、更详细一些,感兴趣可以看下)。
1 泰勒级数展开
1.1
我们知道 的麦克劳林级数(即
点的泰勒级数)为:
取前面三项(用 表示取了前三项)就可以在
周围近似
:
取的项数越多(注意看下图中的 ),对
的近似就越好:
当 时,麦克劳林级数可以无限逼近于
,这些是泰勒级数的基本概念,这里不再赘述。
1.2
这个函数:
它的麦克劳林级数为:
随着 增大,麦克劳林级数会无限逼近
之间的
:
这样的结果还是比较好理解,因为 有两个无穷间断点:
而它的麦克劳林级数是连续函数,自然没有办法跨越这两个间断点,所以 的麦克劳林级数的完整写法是:
即在 区间才有效,超出这个范围,麦克劳林级数就没法逼近
了:
因为左右距离展开点 都是
:
所以也说在 点处,此泰勒级数的 收敛半径 为
。
1.3
而这个函数:
它的麦克劳林级数为:
随着 增大,麦克劳林级数:
努力地在扩大近似的范围,但依然被局限在 的阴影内,所以麦克劳林级数的完整写法应该是:
可是这又没有什么间断点,为什么会这样?
2 复数域的真相
直到有一天,把:
的定义域从实数域变到复数域:
然后作出这个函数的图像(因为自变量 和函数
都是二维的,本来要画出来需要四维空间,下图只画了
的实部):
用垂直于实轴的平面去切这个函数:
可以看到,交线即是 :
而用垂直于虚轴的平面去切这个函数,交线即是 :
这两个函数原来是一个复数域函数的不同部分(乘以 就相当于旋转
):
让我们尝试这么来演示, 作用在虚轴上(在三维图中很难看清楚细节,让我们将它旋转
来表示),收敛半径为
:
自变量旋转 得到的就是
,同时收敛半径也跟着旋转:
所以 的泰勒级数(下图中绿色的曲线)被钳制在
这个范围内(这里的“所以”可能有点突兀,不过此处只是为了给一个直观,具体的证明可以参见维基百科):
自变量是可以任意旋转的,因此收敛半径旋转后会得到一个 收敛圆 。维基百科上有幅图画的很清楚,图中白色的圆圈就是收敛圆(虚轴、实轴各自的泰勒级数也画在图上了):
3 复数,让我们大开眼界
这个问题点亮了我,让我认识到,只知道实数,就好像生活在二维空间中的纸片人:
突然发现有一个黑点在草地上忽大忽小的闪烁,纸片人完全不知道怎么去解释:
如果切换到三维视角去的话,问题就很简单了,原来是一个三维的球体穿过二维平面:
而这种让我们大开眼界的视角,正是复数。
(关于 的泰勒级数的神秘现象,早就被柯西大神注意到了,也是他证明了收敛圆的存在。)
文章的最新版本在(可能会有后继更新):泰勒级数为什么不能展开?