泰勒级数为什么不可以展开?

之前写了两篇关于复数的文章了:

其中提到复数的发现是源于解一元三次方程:

x^3-15x-4=0

其实在我们学习路径上,一般也不会碰到解一元三次方程的问题,真正引起我对复数思考的是:

\frac{1}{1+x^2}

泰勒级数展开的问题(关于这个问题,之前写过“使用泰勒公式进行估算时,在不同点有啥区别?”,更初级、更详细一些,感兴趣可以看下)。

1 泰勒级数展开

1.1 \sin x

我们知道 \sin x 的麦克劳林级数(即 x=0 点的泰勒级数)为:

\sin x=\sum _{k=0}^{\infty }{\frac {(-1)^{k}}{(2k+1)!}}x^{2k+1}=x-{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}-\cdots

取前面三项(用 t=3 表示取了前三项)就可以在 0 周围近似 \sin x :

取的项数越多(注意看下图中的 t ),对 \sin x 的近似就越好:

当 t\to\infty 时,麦克劳林级数可以无限逼近于 \sin x ,这些是泰勒级数的基本概念,这里不再赘述。

1.2 \frac{1}{1-x^2}

这个函数:

它的麦克劳林级数为:

f(x)=\frac{1}{1-x^2}=\sum_{k=0}^{\infty}x^{2k}=1+x^2+x^4+\cdots

随着 t 增大,麦克劳林级数会无限逼近 -1 < x <1 之间的f(x) :

这样的结果还是比较好理解,因为 f(x) 有两个无穷间断点:

而它的麦克劳林级数是连续函数,自然没有办法跨越这两个间断点,所以 f(x) 的麦克劳林级数的完整写法是:

f(x)=\frac{1}{|1-x^2|}=\sum_{k=0}^{\infty}x^{2k}=1+x^2+x^4+\cdots,\quad \color{red}{-1 < x < 1}

即在 -1 < x < 1 区间才有效,超出这个范围,麦克劳林级数就没法逼近 f(x) 了:

因为左右距离展开点 x=0 都是 1 :

所以也说在 x=0 点处,此泰勒级数的 收敛半径 为 1 。

1.3 \frac{1}{1+x^2}

而这个函数:

它的麦克劳林级数为:

f(x)=\frac{1}{1+x^2}=\sum_{k=0}^{\infty}(-1)^kx^{2k}=1-x^2+x^4-\cdots

随着 t 增大,麦克劳林级数:

努力地在扩大近似的范围,但依然被局限在 -1 < x < 1 的阴影内,所以麦克劳林级数的完整写法应该是:

f(x)=\frac{1}{1+x^2}=\sum_{k=0}^{\infty}(-1)^kx^{2k}=1-x^2+x^4-\cdots,\quad\color{red}{-1 < x < 1}

可是这又没有什么间断点,为什么会这样?

2 复数域的真相

直到有一天,把:

g(x)=\frac{1}{1+x^2},\quad(x\in\mathbb{R})

的定义域从实数域变到复数域:

g(z)=\frac{1}{1+z^2},\quad(\color{red}{z\in\mathbb{C}})

然后作出这个函数的图像(因为自变量 z 和函数 g(z) 都是二维的,本来要画出来需要四维空间,下图只画了 g(z) 的实部):

用垂直于实轴的平面去切这个函数:

可以看到,交线即是 \frac{1}{1+x^2} :

而用垂直于虚轴的平面去切这个函数,交线即是 \frac{1}{1-x^2} :

 

这两个函数原来是一个复数域函数的不同部分(乘以 i 就相当于旋转 90^\circ ):

g(x)=\frac{1}{1+x^2}\xrightarrow{\quad 自变量旋转90^\circ\quad }f(x)=g(ix)=\frac{1}{1-x^2}

让我们尝试这么来演示, f(x)=\frac{1}{1-x^2} 作用在虚轴上(在三维图中很难看清楚细节,让我们将它旋转 90^\circ 来表示),收敛半径为 1 :

自变量旋转 90^\circ 得到的就是 g(x)=\frac{1}{1+x^2} ,同时收敛半径也跟着旋转:

所以 g(x)=\frac{1}{1+x^2} 的泰勒级数(下图中绿色的曲线)被钳制在 -1 < x < 1 这个范围内(这里的“所以”可能有点突兀,不过此处只是为了给一个直观,具体的证明可以参见维基百科):

自变量是可以任意旋转的,因此收敛半径旋转后会得到一个 收敛圆 。维基百科上有幅图画的很清楚,图中白色的圆圈就是收敛圆(虚轴、实轴各自的泰勒级数也画在图上了):

3 复数,让我们大开眼界

这个问题点亮了我,让我认识到,只知道实数,就好像生活在二维空间中的纸片人:

突然发现有一个黑点在草地上忽大忽小的闪烁,纸片人完全不知道怎么去解释:

如果切换到三维视角去的话,问题就很简单了,原来是一个三维的球体穿过二维平面:

而这种让我们大开眼界的视角,正是复数。

(关于 g(x)=\frac{1}{1+x^2} 的泰勒级数的神秘现象,早就被柯西大神注意到了,也是他证明了收敛圆的存在。)

文章的最新版本在(可能会有后继更新):泰勒级数为什么不能展开?

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

马同学图解数学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值