【小技巧】matlab中进行并行运算仿真加快仿真速度

欢迎订阅《FPGA/MATLAB/SIMULINK系列教程》

Simulink教程目录

目录

1.1并行运算机制以及parfor的应用

1.2 并行机制的执行效率统计


1.1并行运算机制以及parfor的应用

       MATLAB中的并行运算可以通过使用"parfor"函数来实现。"parfor"函数是"for"循环的并行版本,它可以在多个处理器核心上同时执行循环迭代,从而提高运算速度。以下是在MATLAB中进行并行运算的一些基本步骤和注意事项:

  1. 确保你有使用MATLAB的并行计算工具箱(Parallel Computing Toolbox)。"parfor"函数是这个工具箱的一部分。
  2. 编写使用"parfor"函数的代码。与普通的"for"循环相比,"parfor"循环中的变量不需要是全局变量,因此你不需要在循环之前声明变量。
  3. 在"parfor"循环中,每个迭代都是独立执行的,这意味着你可以在不同的处理器核心上同时执行它们。
  4. "parfor"函数会自动进行循环并行化,并将迭代分配给处理器核心。然而,某些操作可能会阻止并行化,例如使用大量的内存或进行大量的输入/输出操作。
  5. 当你使用"parfor"函数时,需要注意一些事项。首先,要避免在循环中修改数据结构,因为这可能会导致数据不一致。其次,要避免在循环中使用大量的输入/输出操作,因为这会降低并行化的效率。

下面是一个使用"parfor"函数的简单示例:

% 定义一个包含大量数据的数组  
data = rand(1000, 1000);  
  
% 使用parfor进行并行计算  
parfor i = 1:10  
    sum = sum(data(:, i));  
    disp(sum);  
end

       在这个示例中,我们使用"parfor"函数对数组的每一列进行求和,并将结果输出到控制台。由于这个任务是并行执行的,因此求和操作的速度会更快。

       需要注意的是,"parfor"函数并不总是能够提高计算速度。实际上,如果任务的计算量很小,或者处理器核心之间的通信开销很大,那么使用"parfor"函数可能会导致性能下降。在这种情况下,你可能需要根据你的具体任务来评估并行化是否有助于提高性能。

1.2 并行机制的执行效率统计

在前一个小技巧学习中,我们学习了如何统计程序运行的时间。

【小技巧】在matlab中如何精确统计一段程序的运行时间_fpga和matlab的博客-CSDN博客_matlab执行一条指令的时间

我们先执行如下的程序:

clc;
clear;
close all;
 
 
idx=0;
tic;
for j = 1:1:100000000
    if mod(j,10000)==1
       j 
    end
    idx=idx+1;
end
times = toc;

 
idx=0;
tic;
parfor j = 1:1:100000000
    if mod(j,10000)==1
       j 
    end
    idx=idx+1;
end
times2 = toc;

figure;
bar([times,times2]);
 



运行时间如下:

我们可以看到,采用parfor之后,系统的运行时间将大大减少。如果完成之后,想关闭并行运算机制,则点击:

点击shutdown,就可以关闭并行运行机制了。 

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fpga和matlab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值