目录
一、理论基础
RSA算法是基于数论的公开密钥加密算法,它已经成为现在最流行的公钥加密算法和数字签名算法之一。其算法的安全性基于数论中大素数分解的困难性,所以RSA公钥密码体制算法的关键是如何产生大素数和进行大指数模幂运算。本文首先介绍了RSA 公开密钥加密算法的数学原理,并介绍了几种流行的产生大素数的算法。然后用matlab具体实现公钥加密算法RSA的加密和解密,从而实现了数据的安全传输。
所谓密码技术,就是针对信息进行重新编码,从而达到隐藏信息的内容,使非法用户无法获取信息真实内容的一种手段。目前在网络中,一般采用两种密码体制:对称密钥体制和非对称密钥体制。对称密钥体制中的加密密钥和解秘密钥是相同的,所以又称密秘密钥密码体制。对称密钥算法运算效率高、使用方便、加密效率高,在处理大量数据时被广泛使用,但其关键是要保证密钥的安全,为安全起见,密钥要定期改变,所以,对称密钥就存在一个如何安全管理密钥的问题。与对称密钥体制相对应的非对称密钥体制又称为公开密钥密码体制,它是在1976 年由Diffe

本文详细介绍了RSA公开密钥加密算法的数学原理,包括算法的安全性基于大素数分解的困难性,以及如何在Matlab中实现RSA加密和解密。通过讨论密钥生成过程和加密解密流程,展示了RSA算法在数据安全传输中的应用。
订阅专栏 解锁全文
327

被折叠的 条评论
为什么被折叠?



