时间序列分析与预测:ARIMA-LSTM综合应用股票数据

ARIMA可以捕捉一些线性趋势和季节性,而LSTM可以处理更复杂的模式。ARIMA-LSTM混合模型将ARIMA和LSTM结合使用,可以提供更全面的序列建模能力,适用于既有线性趋势又有复杂非线性关系的时间序列数据。

本文提供了针对股票收盘价时间序列数据实现ARIMA-LSTM模型的Python代码,详细解释了代码每一步的思路和分析结果。

(本文没有包含具体的代码,代码文件可在gzh'finance褪黑素'下回复关键词‘240122’获取)

目录

一、ARIMA模型拟合

平稳性检验

白噪声检验

自相关和偏自相关图

训练模型

预测结果

二、获取残差

计算ARIMA模型的残差

检验残差是否为正态变化图形

提取残差

三、LSTM模型训练

四、预测

五、评估


一、ARIMA模型拟合

使用ARIMA模型对股票数据进行拟合。ARIMA模型的拟合过程包括选择合适的阶数(p、d、q),估计模型参数,并检查模型的残差。

初始数据:

提取收盘价的变化趋势:

平稳性检验

因为p=0.143>0.05,因此需要进行差分。

为什么需要差分:

1. 统计模型通常基于一些基本的假设,其中之一是时间序列数据是平稳的。平稳性意味着时间序列的统计性质在时间上是不变的,即均值和方差是常数。非平稳性的时间序列可能会导致模型的不稳定性和不准确性。

2. 很多时间序列数据包含趋势和季节性成分,这些成分可能掩盖了数据的真实波动。通过差分,可以剥离出这些趋势和季节性因素,使得残差更接近白噪声,更适合建模。

3. 平稳时间序列的统计性质更容易建模和预测。

差分后的数据变化趋势为:

再次检验后,pvalue为2.7963374070020164e-05<0.05,因此通过平稳性检验。

白噪声检验

import statsmodels.api as sm
lb_test_stat, lb_p_value = sm.stats.acorr_ljungbox(diff1.dropna(), lags=[1], return_df=False)
print('Ljung-Box Test Statistic:', lb_test_stat)
print('Ljung-Box P-Value:', lb_p_value)

如果 lb_p_value 较大,那么可以接受白噪声假设。

自相关和偏自相关图

  • 截尾:当时间序列的自相关函数(ACF)或偏自相关函数(PACF)在某阶之后迅速趋向于0,即不再显著,这种情况被称为截尾。对于MA模型,其自相关系数会有截尾的特性。
  • 拖尾:与截尾相对的是拖尾,它指的是时间序列的相关函数在某阶之后仍然保持非零的值,不会突然变为零或者在接近零的地方剧烈波动。例如,对于AR模型,其偏自相关系数会有拖尾的特性。

这里自相关函数是拖尾,偏自相关为截尾,并在1步后剧降,这里应该是AR(2)模型。

使用airc和bic准确定阶,

是AR(2)模型。(ARIMA(0,1,2))

训练模型

方法一:

方法二:

预测结果

二、获取残差

计算ARIMA模型的残差

残差变化图形

检验残差是否为正态变化图形

为什么要检验残差是否为正态分布:

统计推断的假设: 统计推断通常基于一些假设,其中之一是残差是独立同分布的正态变量。如果残差不满足这一假设,可能会影响对参数估计、置信区间和假设检验的准确性。

模型假设检验: 检验残差是否呈正态分布有助于验证模型的基本假设。如果残差不是正态分布,可能意味着模型未能捕捉数据中的某些特征,或者存在模型的缺陷。

预测的可靠性: 在进行预测时,正态分布的残差意味着预测值的置信区间更容易计算,并且预测误差更容易解释。

模型诊断: 通过检验残差是否正态,可以进行模型的诊断。如果残差呈现出系统性的偏离正态分布的趋势,可能需要对模型进行修正或改进。

提取残差

在训练LSTM模型时,需要进行标准化或归一化处理,以确保输入数据在合理的范围内。

在训练深度学习模型,尤其是像LSTM这样的循环神经网络(RNN)时,进行标准化或归一化处理是一种常见的数据预处理。

加速收敛: 标准化或归一化可以使输入数据的分布更加接近标准正态分布,这有助于避免梯度消失或梯度爆炸的问题,从而加速模型的收敛过程。

提高梯度的稳定性: 标准化或归一化可以确保输入特征的尺度一致,这有助于使梯度在反向传播过程中更加稳定。

更好的泛化能力: 标准化或归一化可以提高模型的泛化能力,使其更适应不同尺度和范围的输入数据。

三、LSTM模型训练

使用LSTM模型对ARIMA模型的残差进行训练。这里将残差作为输入序列,LSTM模型学习残差的非线性模式。

四、预测

将ARIMA模型的预测值与LSTM模型的预测值相加,得到最终的混合模型的预测结果。

五、评估

通过评估混合模型的性能,可以根据需要对模型进行调整,例如调整ARIMA和LSTM模型的参数。

内容概要:本文档详尽介绍了使用 Python 实现ARIMA-LSTM 时间序列预测模型的具体步骤。该模型结合了传统时间序列分析方法(ARIMA)处理线性关系和现代深度学习技术(LSTM)处理非线性关系的优势。首先探讨了 ARIMALSTM 单独使用的局限性以及两者结合的可能性,并展示了通过数据预处理、模型构建训练,以及预测结果评估等多个环节来提高时间序列预测准确性。特别是在 ARIMA 中提取出时间序列的线性特征之后再将其交给 LSTM 学习,使模型不仅能够捕捉历史趋势,还可以应对复杂的非线性变化。 接下来详细解析了从数据导入、差分解析、模型组合到最后的结果对比可视化全流程的技术细节,附带完整的代码示例方便理解和实践操作。同时讨论了一些可能遇到的问题及其解决方案,比如怎样选择正确的差分数阶、调整网络架构以防止过度拟合等挑战。 适用人群:对于想要深入理解时间序列预测技术的专业人士、研究人员和技术开发者尤为合适。 使用场景及目标:适用于需要对未来事件做出较为可靠预期的各种应用场景,例如金融市场、能源需求、医疗健康管理等行业。其主要目的是帮助企业、机构更好地规划资源,规避潜在的风险,提升决策科学性。另外也适合希望掌握混合使用传统方法论及前沿科技解决问题的学习者。具体目标还包括但不限于: 1. 建立起既能把握住宏观经济指标规律又能细致入微洞察市场内部运行状态的综合预测工具; 2. 提升业务流程中的预测精度可靠性,助力公司战略部署日常运作更加高效有序; 3. 为进一步开展相关领域的学术研究奠定坚实的技术基础。 其他说明:本项目不仅仅是为了搭建一个高性能的预测系统,更重要的是探索了统计学模型和AI算法间协同工作的可能性,这有望开启更多跨界合作的新途径,并且为将来类似问题的研究提供了宝贵的经验和启示。
评论 93
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值