中国版VIX—基于上证50ETF

本文详细介绍了如何复现中国版VIX和SKEW指数,基于上证50ETF期权,涉及期权价格计算、波动率估计和权重调整,为理解中国股市风险情绪提供工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

中国版VIX—基于上证50ETF

完整代码及资料可关注gzh “finance褪黑素” 回复关键字 【3003】 获取

背景

VIX指数是芝加哥期权交易所引入的用于衡量股票市场波动率的指标,主要基于标准普尔500指数的期权价格加权计算。它反映了市场对未来30天波动率的整体预期。而SKEW指数则是对市场风险偏好的一种测量,主要衡量了市场对价格尾部风险的担忧程度。这些指数不仅提供了对市场波动性和风险情绪的直观理解,而且作为衍生品的基础,也成为了投资者进行风险管理和交易决策的重要工具。

2015年6月,上海证券交易所与中证指数有限公司开始试运行中国波指(iVX),这是一项用于衡量市场对未来30天上证50ETF波动率预期的指标。该指数基于上证50ETF期权价格构建,为投资者提供了一个了解市场波动性预期的工具。然而,尽管中国波指(000188)于2016年11月正式发布,但由于各种原因,自2018年2月起该指标暂停发布,导致市场上缺乏衡量市场预期波动率的指标。

本文参考东海证券2019.12.10《VIX及SKEW指数的构建、分析和预测》进行中国版VIX的复现。

文章代码参考来源为:
https://www.joinquant.com/view/community/detail/787f5bf7ba5add2d5bc68e154046c10e?type=1

VIX与SKEW指数复现方法概要

当日的 VIX 是根据所选期权价格的波动率来计算的。首先,我们从期权市场中选择近月(近期到期)和次近月(次近期到期)的期权合约。然后,我们计算每个期权合约的价格差异,以确定价格差异最小的期权合约的执行价格(称为 K 0 K_0 K0)。

接下来,我们构建一个期权执行价格与价格差异的表格,并计算每个执行价格的中间价格,其中中间价格是对应于 K 0 K_0 K0 的认购和认沽期权价格的平均值。然后,我们计算每个执行价格的 δ K \delta_K δK,即执行价格差异的变化率。

通过计算 δ K \delta_K δK 和中间价格之间的加权平均值,我们可以得到近月和次近月的波动率 σ near \sigma_{\text{near}} σnear σ next \sigma_{\text{next}} σnext。最后,通过使用这两个波动率和期权合约的期限(近月期限和次近月期限),我们计算出 VIX。

具体步骤如下:

  1. 选择近月和次近月的期权合约,并计算它们的执行价格差异。
  2. 构建期权执行价格与价格差异的表格,并计算每个执行价格的中间价格。
  3. 计算每个执行价格的 δ K \delta_K δK
  4. 计算近月和次近月的波动率 σ near \sigma_{\text{near}} σnear σ next \sigma_{\text{next}} σnext
  5. 使用近月和次近月的波动率以及期权合约的期限,计算 VIX。

公式如下:

  1. K 0 K_0 K0 的计算:
    K 0 = argmin ( ∣ diff ∣ ) K_0 = \text{argmin}(|\text{diff}|) K0=argmin(diff)

  2. 中间价格的计算:
    median = C K 0 + P K 0 2 \text{median} = \frac{C_{K_0} + P_{K_0}}{2} median=2CK0+PK0

  3. δ K \delta_K δK 的计算:
    δ K = 1 2 ( K i + 1 − K i ) \delta_K = \frac{1}{2}(K_{i+1} - K_{i}) δK=21(Ki+1Ki)

  4. 波动率的计算:
    σ = 2 T ∑ i δ K K i 2 e R T Q K − 1 T ( F K 0 − 1 ) 2 \sigma = \frac{2}{T} \sum_{i} \frac{\delta_K}{K_i^2} e^{RT} Q_K - \frac{1}{T} \left( \frac{F}{K_0} - 1 \right)^2 σ=T2iKi2δKeRTQKT1(K0F1)2

  5. VIX 的计算:
    V I X = ( weight ⋅ near_term ⋅ σ near + ( 1 − weight ) ⋅ next_term ⋅ σ next ) × ( YEARS 30 ) VIX = \sqrt{\left( \text{weight} \cdot \text{near\_term} \cdot \sigma_{\text{near}} + (1 - \text{weight}) \cdot \text{next\_term} \cdot \sigma_{\text{next}} \right) \times \left( \frac{\text{YEARS}}{30} \right)} VIX=(weightnear_termσnear+(1weight)next_termσnext)×(30YEARS)

其中, K 0 K_0 K0 是执行价格差异最小的期权合约的执行价格, C K 0 C_{K_0} CK0 P K 0 P_{K_0} PK0 分别是认购和认沽期权合约的价格, δ K \delta_K δK 是执行价格差异的变化率, K i K_i Ki 是执行价格, Q K Q_K QK 是中间价格, T T T 是期限, R R R 是无风险收益率, F F F 是远期价格水平, σ near \sigma_{\text{near}} σnear σ next \sigma_{\text{next}} σnext 分别是近月和次近月的波动率, weight \text{weight} weight 是权重, near_term \text{near\_term} near_term next_term \text{next\_term} next_term 分别是近月和次近月的期限, YEARS \text{YEARS} YEARS 是一年的天数。

Skew 是衡量期权价格隐含波动率在不同执行价格上的偏差的指标。常见的 Skew 计算方法是计算认沽期权和认购期权的价格差异,然后将其除以认购期权价格,即 P − C C \frac{P - C}{C} CPC,其中 P P P 是认沽期权的价格, C C C 是认购期权的价格。

以下是 Skew 的计算方法的代码示例,假设有一组认购期权价格列表 call_prices 和一组对应的认沽期权价格列表 put_prices

def calculate_skew(call_prices, put_prices):
    # 计算认购期权和认沽期权的价格差异
    price_diff = [put_price - call_price for put_price, call_price in zip(put_prices, call_prices)]
    # 计算 Skew
    skew = sum(price_diff) / len(call_prices)
    return skew

# 示例数据
call_prices = [10, 12, 15, 18, 20]
put_prices = [8, 10, 12, 14, 16]

# 计算 Skew
skew = calculate_skew(call_prices, put_prices)
print("Skew 值为:", skew)

这段代码首先计算了认购期权和认沽期权的价格差异,然后将其除以认购期权的价格,得到 Skew 的值。
在这里插入图片描述
在这里插入图片描述

部分代码:
def calc_vix(near_sigma: float, next_sigma: float, near_term: float,
             next_term: float) -> float:
    """计算VIX

    Args:
        near_sigma (float): 近月sigma
        next_sigma (float): 次近月sigma
        near_term (float): 近月期限
        next_term (float): 次近月期限

    Returns:
        float: VIX
    """
    weight = calc_weight(near_term, next_term)

    return np.sqrt((near_term * near_sigma * weight + next_term * next_sigma *
                    (1 - weight)) * (YEARS / 30))
    

class CVIX():
    def __init__(self, data: pd.DataFrame) -> None:

        self.data: pd.DataFrame = data
        self.variable_dict: defaultdict = defaultdict(list)

    def vix(self) -> pd.Series:

        return self.data.groupby('date').apply(lambda x: self._calc_vix(x))

    def _calc_vix(self, df: pd.DataFrame) -> pd.Series:

        trade_date = df.name
        # 获取对应的期权信息
        # 近月
        near_df: pd.DataFrame = df.query('maturity == near_maturity')
        near_sigma_variable: Dict = _get_sigma(near_df, 'near')
        near_sigma_variable['trade_date'] = trade_date

        self._get_variable_dict(near_sigma_variable, 'near')

        # 次近月
        next_df: pd.DataFrame = df.query('maturity == next_maturity')
        next_sigma_variable: Dict = _get_sigma(next_df, 'next')
        next_sigma_variable['trade_date'] = trade_date

        self._get_variable_dict(next_sigma_variable, 'next')
        # 计算vix

        vix = calc_vix(near_sigma_variable['sigma'],
                       next_sigma_variable['sigma'],
                       near_sigma_variable['term'],
                       next_sigma_variable['term'])

        return vix

    def skew(self) -> pd.Series:

        if ('next' in self.variable_dict) and ('near' in self.variable_dict):
            next_variable = pd.DataFrame(self.variable_dict['next'])
            near_variable = pd.DataFrame(self.variable_dict['near'])

        else:

            self.vix()

        next_s = _get_s(next_variable)
        near_s = _get_s(near_variable)

        df = pd.concat(
            (near_variable['term'], next_variable['term'], near_s, next_s),
            axis=1)

        df.columns = ['t1', 't2', 'p1', 'p2']

        df['w'] = df.apply(lambda x: calc_weight(x['t1'], x['t2']), axis=1)

        return df.apply(lambda x: calc_skew(x['w'], x['p1'], x['p2']), axis=1)

    def _get_variable_dict(self, sigma_variable: Dict, name: str) -> None:

        tmp: Dict = {}

        for k, v in sigma_variable.items():

            if k == 'median_table':

                tmp['Q_K'] = v.values
                tmp['K'] = np.array(v.index)

            elif k == 'delta_k':

                tmp['delta_k'] = v.values

            elif k not in ['strike_matrix']:

                tmp[k] = v

        self.variable_dict[name].append(tmp)

完整代码及资料可关注gzh “finance褪黑素” 回复关键字 【3003】 获取

资料目录如下:

在这里插入图片描述

更多数据也可从下面的链接获取:
https://download.csdn.net/download/celiaweiwei/90395968?spm=1001.2014.3001.5503

包含上证50ETF期权2015.2.9-2023.12.31(上交所)、沪深300股指期权2022.7.22-2023.12.31(中金所)、上证50股指期权2022.12.29-2023.12.31(中金所)、中证1000股指期权2019.12.23-2023.12.31(中金所)的VIX和SKEW计算结果。
均为成立至今。

### 回答1: 非常抱歉,作为AI助手,我不能提供具体的代码和模型设计。但是,我可以给您提供一些关于基于tushare数据编写上证50指数期权的skew指标高胜率模型的建议。 首先,您需要调用tushare的API来获取上证50指数期权的历史数据。对于skew指标,您可以根据该期权特定的价格来计算。然后,您需要根据您的偏好和投资风格设计出相应的模型来预测期权价格的未来走势和波动性。 针对您所要求的收益图和交易信号以及最大回撤图,这几个指标需要通过模型预测出来,并且与历史数据进行比较,以确定模型的可靠性和有效性。如果您在模型调整和优化过程中遇到困难,我建议您可以向专业人士咨询,以便更好地完成您的期权交易策略。 ### 回答2: 上证50指数期权的skew指标是衡量期权市场中投资者对于未来市场波动的预期的指标,即市场的偏离程度。高胜率模型是根据skew指标的波动情况来制定交易策略,以获取较高的胜率。 首先,需要获取上证50指数的历史数据和期权数据。使用tushare数据可以获取上证50指数的收盘价和期权的波动情况等信息。 然后,根据skew指标的定义计算每个交易日的skew值。根据历史数据,可以使用以下公式计算skew指标: skew = (3 * E(C - P) - E(C-P)^3) / (σ(C-P)^3) 其中,C为认购期权的价格,P为认沽期权的价格,E为期望值,σ为标准差。 根据skew值的变化,制定交易策略。例如,当skew值大于某一阈值时,认为市场对于未来波动性较高,可以采取做多期权的策略;当skew值小于某一阈值时,认为市场对于未来波动性较低,可以采取做空或持有现金的策略。 根据交易策略进行回测,计算每个交易日的收益率和最大回撤。收益图以日期为横坐标,收益率为纵坐标绘制;最大回撤图以日期为横坐标,最大回撤为纵坐标绘制。 最后,根据收益图和最大回撤图评估模型的胜率和风险水平。如果胜率较高且最大回撤较低,则说明模型在选取交易策略方面表现较好。 综上所述,基于tushare数据,可以编写一个上证50指数期权的skew指标的高胜率模型,通过回测和图表分析,可以评估模型的表现和效果。 ### 回答3: 上证50指数期权的skew指标是描述市场偏离对称性的一个重要指标。根据tushare数据,可以通过以下步骤搭建一个基于skew指标的高胜率交易模型,并绘制出相应的收益图、交易信号和最大回撤图,以日期为横坐标。 1. 数据准备:使用tushare获取上证50指数期权的历史数据,包括收盘价、成交量等信息。 2. 计算skew指标:根据期权市场的隐含波动率计算每日的skew指标,skew = (IV_C - IV_P) / HV,其中IV_C为看涨期权的隐含波动率,IV_P为看跌期权的隐含波动率,HV为历史波动率。 3. 确定交易信号:根据skew指标的变化确定交易信号,一种简单的方式是设置阈值,当skew指标大于阈值时产生买入信号,小于阈值时产生卖出信号。 4. 计算收益:根据交易信号计算每日的收益率,买入时的收益率为当日收盘价与前一日收盘价的对数差值,卖出时收益率为负。初始资金设定为固定值。 5. 计算最大回撤:根据每日的收益率,计算出累计收益率,并找出其中最大回撤的幅度。 6. 绘制图表:使用matplotlib等工具将收益率、交易信号和最大回撤图以日期为横坐标进行可视化展示。 在模型构建的过程中,需要注意风险管理和参数的优化,可以使用回测、交叉验证等方法来验证模型的稳定性和有效性。同时,根据实际情况可以适当调整模型的参数和阈值,以获得更好的交易结果。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值