在使用DeepSeek或其他AI工具时,提问的关键词和提问方式对获得准确、有用的回答至关重要。以下是一些建议:
1. 明确关键词
- 具体性:使用清晰、具体的词汇,避免模糊表达。
-
- 例如:用“如何提高Python代码的运行效率?”而非“怎么让代码更快?”。
- 相关性:确保关键词与问题紧密相关。
-
- 例如:问“机器学习中的过拟合如何解决?”时,关键词应为“机器学习”、“过拟合”、“解决方法”。
2. 结构化提问
- 背景信息:提供必要的上下文,帮助AI更好地理解问题。
-
- 例如:“我正在开发一个电商网站,如何优化数据库查询性能?”。
- 分步提问:复杂问题可以拆解为多个小问题。
-
- 例如:先问“什么是过拟合?”,再问“如何解决过拟合?”。
3. 使用开放式和封闭式问题
- 开放式问题:适用于需要详细解释或讨论的情况。
-
- 例如:“深度学习和机器学习的主要区别是什么?”。
- 封闭式问题:适合寻求明确答案的情况。
-
- 例如:“Python中列表和元组的区别是什么?”。
4. 避免歧义
- 清晰表达:避免使用可能引起误解的词汇。
-
- 例如:用“如何在Python中实现快速排序?”而非“怎么排序?”。
- 避免缩写:除非缩写广为人知,否则尽量使用全称。
-
- 例如:用“人工智能”而非“AI”。
5. 提供示例
- 示例代码:技术问题中,提供代码示例有助于AI更准确理解。
-
- 例如:“以下代码为什么报错?”并附上代码。
- 场景描述:描述具体场景,帮助AI提供更贴合的回答。
-
- 例如:“在用户登录系统时,如何防止暴力破解?”。
6. 明确需求
- 指定格式:如果需要特定格式的回答,提前说明。
-
- 例如:“请列出5个提高网站加载速度的方法。”。
- 限定范围:限定回答的范围,避免过于宽泛。
-
- 例如:“在Python中,如何使用递归实现斐波那契数列?”。
7. 迭代提问
- 逐步深入:根据回答进一步追问,获取更详细的信息。
-
- 例如:先问“什么是神经网络?”,再问“神经网络如