来源:探索AGI
嘿,大家好!这里是一个专注于前沿AI和智能体的频道~
4月9日,谷歌在 Cloud Next 大会上正式发布了名为 Agent2Agent (A2A) 的全新开放协议,实现不同 AI Agent 之间的通信与协作。
blog: https://developers.googleblog.com/en/a2a-a-new-era-of-agent-interoperability/
github: https://github.com/google/A2A
2025年,不同平台、不同供应商构建的 AI Agent 如雨后春笋般涌现,但它们之间缺乏统一的通信标准,形成了信息和能力的“孤岛”。谷歌此次联合 Salesforce、SAP、ServiceNow、Atlassian 等超过50家技术伙伴共同推出 A2A,正是为了应对这一挑战,尝试为 Agent 之间的互联互通建立标准。
所以这自然会引出一个问题:这个协议跟上个月炒作的 MCP 有何关联?它们是竞争关系还是互补关系?
AI Agent 的“巴别塔”困境
在深入 A2A 之前,有必要先理解它试图解决的问题背景。
现在 AI Agent 很火,能自动处理邮件、订票、分析数据,甚至写代码。企业也纷纷部署 Agent 来提升效率,比如客服 Agent、销售 Agent、供应链 Agent 等等。
但问题来了,不同公司、不同团队用不同的框架(像 LangGraph、Crew.ai)和平台(Salesforce、SAP)构建 Agent,它们之间没法直接交流和协作。就像一群说着不同语言的人想一起建个塔(巴别塔),结果可想而知——效率低下,很多潜力无法发挥。
要完成一个稍微复杂点的任务,比如说自动化招聘流程,可能需要 HR Agent 发布职位、筛选简历 Agent 初筛、面试安排 Agent 协调时间、背景调查 Agent 核实信息……如果这些 Agent 不能顺畅沟通、传递信息、协调任务,整个流程就会卡壳,或者需要大量人工介入。
这就是 A2A 协议想要解决的核心痛点:为不同来源、不同技术的 AI Agent 提供一个通用的“语言”和“协作规范”。
谷歌 A2A 协议详解
A2A 协议被设计成一个开放、中立的标准(基于 Apache 2.0 许可),目标就是实现 AI Agent 之间安全、高效的直接通信和协作。谷歌强调,它基于几个关键原则:
那么,更简单来说,A2A 是如何让 Agent 协作起来的呢?它有几个核心概念:

能力发现 (Capability Discovery) - Agent Card:你可以把
Agent Card
想象成每个 Agent 的“数字名片”或“能力说明书”。它是一个公开的 JSON 文件(通常放在/.well-known/agent.json
),里面写清楚了这个 Agent 能做什么(技能)、怎么联系它(端点 URL)、需要什么身份验证等等。 当一个 Agent (称之为 Client Agent) 需要找其他 Agent 帮忙时,它就可以通过查看这些 Agent Card 来找到合适的“队友”(Remote Agent),了解对方的能力和沟通方式。这就像一个自动化的“婚介系统”,让 Agent 能够动态地发现和利用生态中其他 Agent 的能力。任务管理 (Task Management):Agent 之间的协作是围绕“任务”进行的。A2A 定义了一个结构化的任务模型和清晰的生命周期状态,比如
submitted
(已提交),working
(处理中),input-required
(需要输入),completed
(已完成),failed
(失败),canceled
(已取消)。 这就像一个项目管理系统,让发起任务的 Client Agent 和执行任务的 Remote Agent 能够清晰地追踪任务进展,知道当前进行到哪一步了。对于需要多个步骤、跨越较长时间的复杂业务流程(比如前面提到的招聘),这种状态管理就变得非常的中央了。任务的输出结果被称为“工件 (artifact)”。安全协作 (Secure Collaboration):它支持标准的认证授权机制,并且 Agent Card 会明确指定访问服务所需的认证方法。而且,协议设计上只共享完成任务所必需的输入和输出(工件),而不会暴露 Agent 内部的思考过程或记忆状态,保护了各自的“秘密”和敏感数据。
用户体验协商 (User Experience Negotiation):Agent 输出的内容 (比如图片、表单、视频) 会包含具体的内容类型。Client Agent 和 Remote Agent 可以协商内容的呈现格式,甚至可以协商客户端的 UI 能力(比如是否支持 iframe 或交互式表单),确保最终用户能获得一致且有效的体验。

Client Agent 和 Remote Agent 通过 A2A 协议进行交互的基本流程:简单来说,就是 Client Agent 通过 Agent Card 发现 Remote Agent,然后创建一个 Task 发给 Remote Agent,两者通过定义好的消息格式进行通信、交换工件、同步状态,直到任务完成或出现其他状态。
A2A vs MCP:互补而非竞争
好了,现在回到大家关心的问题:谷歌的 A2A 和 Anthropic 的 MCP 是什么关系?

谷歌官方的说法非常明确:A2A 是对 MCP 的补充 (complementary)。
这两者解决的问题层面不同:
MCP (模型上下文协议): 主要关注的是 单个 AI 模型 (或 Agent) 如何安全、标准地连接和交互外部的工具、数据源和服务。它像是一个“通用遥控器”或“USB-C 接口”,让 AI 模型能够方便地调用 API、访问数据库、读取文件、执行代码片段等,从而获取完成任务所需的上下文信息和能力。
A2A (Agent2Agent 协议): 主要关注的是 不同 AI Agent 之间如何进行通信、协调和协作。它解决的是多个 Agent 如何作为一个团队一起工作的问题。
❝如果说 MCP 是给 Agent 提供了使用工具的“扳手” (wrench),那么 A2A 就是“工程师之间的对话” (conversation between mechanics),让多个 Agent 能像一个诊断问题的技师团队一样沟通协作。
一个例子简单总结一下。
A2A 和 MCP 并不冲突,反而可以很好地结合使用。想象一个复杂的场景:
用户的个人助理 Agent (Client Agent) 接到指令要完成一份市场研究报告。
但是呢,这个助理 Agent 能力有限,于是它通过 A2A 协议,找到了一个专门负责信息搜集的 Research Agent (Remote Agent),并将任务委派给它。
这个 Research Agent 需要访问最新的行业数据库、调用网页爬虫工具、分析财报数据。这时,它就可以利用 MCP 协议,安全、高效地连接到这些外部数据库和工具来获取所需信息。
然后,Research Agent 完成研究后,再次通过 A2A 协议,将整理好的报告(工件)返回给用户的个人助理 Agent。
在这个例子里,MCP 增强了单个 Agent (Research Agent) 的能力,而 A2A 则实现了不同 Agent (个人助理 Agent 和 Research Agent) 之间的协作。两者结合,才能高效完成复杂的任务。
最后
A2A 协议刚刚发布,还处于规范草案阶段,计划在今年晚些时候推出生产就绪版本。它的成功与否,最终取决于能否获得广泛的行业采纳和社区支持。但谷歌这次联合了这么多重量级合作伙伴,无疑为它的推广打下了坚实的基础。
A2A的推出,对AI Agent领域意味着,促进开放,打破孤岛,实现真正的跨平台协作。
阅读最新前沿科技趋势报告,请访问欧米伽研究所的“未来知识库”
https://wx.zsxq.com/group/454854145828
未来知识库是“欧米伽未来研究所”建立的在线知识库平台,收藏的资料范围包括人工智能、脑科学、互联网、超级智能,数智大脑、能源、军事、经济、人类风险等等领域的前沿进展与未来趋势。目前拥有超过8000篇重要资料。每周更新不少于100篇世界范围最新研究资料。欢迎扫描二维码或访问https://wx.zsxq.com/group/454854145828 进入。

截止到3月31日 ”未来知识库”精选的百部前沿科技趋势报告
(加入未来知识库,全部资料免费阅读和下载)
牛津未来研究院 《将人工智能安全视为全球公共产品的影响、挑战与研究重点》
麦肯锡:超级智能机构:赋能人们释放人工智能的全部潜力
AAAI 2025 关于人工智能研究未来研究报告
斯坦福:2025 斯坦福新兴技术评论:十项关键技术及其政策影响分析报告(191 页)
壳牌:2025 能源安全远景报告:能源与人工智能(57 页)
盖洛普 & 牛津幸福研究中心:2025 年世界幸福报告(260 页)
Schwab :2025 未来共生:以集体社会创新破解重大社会挑战研究报告(36 页)
IMD:2024 年全球数字竞争力排名报告:跨越数字鸿沟人才培养与数字法治是关键(214 页)
DS 系列专题:DeepSeek 技术溯源及前沿探索,50 页 ppt
联合国人居署:2024 全球城市负责任人工智能评估报告:利用 AI 构建以人为本的智慧城市(86 页)
TechUK:2025 全球复杂多变背景下的英国科技产业:战略韧性与增长路径研究报告(52 页)
NAVEX Global:2024 年十大风险与合规趋势报告(42 页)
《具身物理交互在机器人 - 机器人及机器人 - 人协作中的应用》122 页
2025 - 2035 年人形机器人发展趋势报告 53 页
Evaluate Pharma:2024 年全球生物制药行业展望报告:增长驱动力分析(29 页)
【AAAI2025 教程】基础模型与具身智能体的交汇,350 页 ppt
Tracxn:2025 全球飞行汽车行业市场研究报告(45 页)
谷歌:2024 人工智能短跑选手(AI Sprinters):捕捉新兴市场 AI 经济机遇报告(39 页)
【斯坦福博士论文】构建类人化具身智能体:从人类行为中学习
《基于传感器的机器学习车辆分类》最新 170 页
美国安全与新兴技术中心:2025 CSET 对美国人工智能行动计划的建议(18 页)
罗兰贝格:2024 人形机器人的崛起:从科幻到现实:如何参与潜在变革研究报告(11 页)
兰德公司:2025 从研究到现实:NHS 的研究和创新是实现十年计划的关键报告(209 页)
康桥汇世(Cambridge Associates):2025 年全球经济展望报告(44 页)
国际能源署:2025 迈向核能新时代
麦肯锡:人工智能现状,组织如何重塑自身以获取价值
威立(Wiley):2025 全球科研人员人工智能研究报告(38 页)
牛津经济研究院:2025 TikTok 对美国就业的量化影响研究报告:470 万岗位(14 页)
国际能源署(IEA):能效 2024 研究报告(127 页)
Workday :2025 发挥人类潜能:人工智能(AI)技能革命研究报告(20 页)
CertiK:Hack3D:2024 年 Web3.0 安全报告(28 页)
世界经济论坛:工业制造中的前沿技术:人工智能代理的崛起》报告
迈向推理时代:大型语言模型的长链推理研究综述
波士顿咨询:2025 亚太地区生成式 AI 的崛起研究报告:从技术追赶者到全球领导者的跨越(15 页)
安联(Allianz):2025 新势力崛起:全球芯片战争与半导体产业格局重构研究报告(33 页)
IMT:2025 具身智能(Embodied AI)概念、核心要素及未来进展:趋势与挑战研究报告(25 页)
IEEE:2025 具身智能(Embodied AI)综述:从模拟器到研究任务的调查分析报告(15 页)
CCAV:2025 当 AI 接管方向盘:自动驾驶场景下的人机交互认知重构、变革及对策研究报告(124 页)
《强化学习自我博弈方法在兵棋推演分析与开发中的应用》最新 132 页
《面向科学发现的智能体人工智能:进展、挑战与未来方向综述》
全国机器人标准化技术委员会:人形机器人标准化白皮书(2024 版)(96 页)
美国国家科学委员会(NSB):2024 年研究与发展 - 美国趋势及国际比较(51 页)
艾昆纬(IQVIA):2025 骨科手术机器人技术的崛起白皮书:创新及未来方向(17 页)
NPL&Beauhurst:2025 英国量子产业洞察报告:私人和公共投资的作用(25 页)
IEA PVPS:2024 光伏系统经济与技术关键绩效指标(KPI)使用最佳实践指南(65 页)
AGI 智能时代:2025 让 DeepSeek 更有趣更有深度的思考研究分析报告(24 页)
2025 军事领域人工智能应用场景、国内外军事人工智能发展现状及未来趋势分析报告(37 页)
华为:2025 鸿蒙生态应用开发白皮书(133 页
《超级智能战略研究报告》
中美技术差距分析报告 2025
欧洲量子产业联盟(QuIC):2024 年全球量子技术专利态势分析白皮书(34 页)
美国能源部:2021 超级高铁技术(Hyperloop)对电网和交通能源的影响研究报告(60 页)
罗马大学:2025 超级高铁(Hyperloop):第五种新型交通方式 - 技术研发进展、优势及局限性研究报告(72 页)
兰德公司:2025 灾难性网络风险保险研究报告:市场趋势与政策选择(93 页)
GTI:2024 先进感知技术白皮书(36 页)
AAAI:2025 人工智能研究的未来报告:17 大关键议题(88 页)
安联 Allianz2025 新势力崛起全球芯片战争与半导体产业格局重构研究报告
威达信:2025 全球洪水风险研究报告:现状、趋势及应对措施(22 页)
兰德公司:迈向人工智能治理研究报告:2024EqualAI 峰会洞察及建议(19 页)
哈佛商业评论:2025 人工智能时代下的现代软件开发实践报告(12 页)
德安华:全球航空航天、国防及政府服务研究报告:2024 年回顾及 2025 年展望(27 页)
奥雅纳:2024 塑造超级高铁(Hyperloop)的未来:监管如何推动发展与创新研究报告(28 页)
HSOAC:2025 美国新兴技术与风险评估报告:太空领域和关键基础设施(24 页)
Dealroom:2025 欧洲经济与科技创新发展态势、挑战及策略研究报告(76 页)
《无人机辅助的天空地一体化网络:学习算法技术综述》
谷歌云(Google Cloud):2025 年 AI 商业趋势白皮书(49 页)
《新兴技术与风险分析:太空领域与关键基础设施》最新报告
150 页!《DeepSeek 大模型生态报告》
军事人工智能行业研究报告:技术奇点驱动应用加速智能化重塑现代战争形态 - 250309(40 页)
真格基金:2024 美国独角兽观察报告(56 页)
璞跃(Plug and Play):2025 未来商业研究报告:六大趋势分析(67 页)
国际电工委员会(IEC):2025 智能水电技术与市场展望报告(90 页)
RWS:2025 智驭 AI 冲击波:人机协作的未来研究报告(39 页)
国际电工委员会(IEC):2025 智能水电技术与市场展望报告(90 页)
RWS:2025 智驭 AI 冲击波:人机协作的未来研究报告(39 页)
未来今日研究所 2025 年科技趋势报告第 18 版 1000 页
模拟真实世界:多模态生成模型的统一综述
中国信息协会低空经济分会:低空经济发展报告(2024 - 2025)(117 页)
浙江大学:2025 语言解码双生花:人类经验与 AI 算法的镜像之旅(42 页)
人形机器人行业:由 “外” 到 “内” 智能革命 - 250306(51 页)
大成:2025 年全球人工智能趋势报告:关键法律问题(28 页)
北京大学:2025 年 DeepSeek 原理和落地应用报告(57 页)
欧盟委员会 人工智能与未来工作研究报告
加州大学伯克利分校:面向科学发现的多模态基础模型:在化学、材料和生物学中的应用
电子行业:从柔性传感到人形机器人触觉革命 - 250226(35 页)
RT 轨道交通:2024 年中国城市轨道交通市场数据报告(188 页)
FastMoss:2024 年度 TikTok 生态发展白皮书(122 页)
Check Point:2025 年网络安全报告 - 主要威胁、新兴趋势和 CISO 建议(57 页)
【AAAI2025 教程】评估大型语言模型:挑战与方法,199 页 ppt
《21 世纪美国的主导地位:核聚变》最新报告
沃尔特基金会(Volta Foundation):2024 年全球电池行业年度报告(518 页)
斯坦福:2025 斯坦福新兴技术评论:十项关键技术及其政策影响分析报告(191 页)
国际科学理事会:2025 为人工智能做好国家研究生态系统的准备 - 2025 年战略与进展报告(英文版)(118 页)
光子盒:2025 全球量子计算产业发展展望报告(184 页)
奥纬论坛:2025 塑造未来的城市研究报告:全球 1500 个城市的商业吸引力指数排名(124 页)
Future Matters:2024 新兴技术与经济韧性:日本未来发展路径前瞻报告(17 页)
《人类与人工智能协作的科学与艺术》284 页博士论文
《论多智能体决策的复杂性:从博弈学习到部分监控》115 页
《2025 年技术展望》56 页 slides
大语言模型在多智能体自动驾驶系统中的应用:近期进展综述
【牛津大学博士论文】不确定性量化与因果考量在非策略决策制定中的应用
皮尤研究中心:2024 美国民众对气候变化及应对政策的态度调研报告:气候政策对美国经济影响的多元观点审视(28 页)
空间计算行业深度:发展趋势、关键技术、行业应用及相关公司深度梳理 - 250224(33 页)
Gartner:2025 网络安全中的 AI:明确战略方向研究报告(16 页)
北京大学:2025 年 DeepSeek 系列报告 - 提示词工程和落地场景(86 页)
北京大学:2025 年 DeepSeek 系列报告 - DeepSeek 与 AIGC 应用(99 页)
CIC 工信安全:2024 全球人工智能立法的主要模式、各国实践及发展趋势研究报告(42 页)
中科闻歌:2025 年人工智能技术发展与应用探索报告(61 页)
AGI 智能时代:2025 年 Grok - 3 大模型:技术突破与未来展望报告(28 页)
上下滑动查看更多