PNAS速递:量化个体和集体常识的框架

本文介绍了一项发表在PNAS的研究,通过形式化方法量化个体和集体层面的常识,发现常识与事实相关,社交感知影响常识,而年龄和性别等因素影响较小。研究揭示常识的普遍性并不成立,为理解常识的定义和在人类及人工智能中的作用提供了新视角。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

a1a512491d8a39932ca1582f01288868.jpeg

关键词:计算社会科学,集体常识,人工智能

e4a05ac79d372fbf4c4ff4c286780481.jpeg

来源: 集智编辑部

编译: 余孟君

62652f1e8af6c8e6cec740ec10251760.png

论文题目:A framework for quantifying individual and collective common sense

论文期刊:PNAS

论文地址:https://www.pnas.org/doi/10.1073/pnas.2309535121

常识的概念在日常对话、政治辩论和对人工智能的评估等广泛的背景中频繁被提及,因此人们可能认为它的含义是不容置疑的。然而令人惊讶的是,常识知识的内在属性(什么使一个主张(claim)具有常识性)以及它在人群中的共享程度(它的“共性”)尚未经过实证研究。最近一篇发表在PNAS上的文章通过引入一种形式化的方法,在个体和集体层面上实证量化常识来解决这个令人困惑的情况。论文作者之一是美国宾夕法尼亚大学社会学教授、小世界网络提出者之一 Duncan J. Watts。

首先,研究者通过人们在主张上达成一致的倾向以及对彼此一致的认知,来定义个体主张和人们的常识性(commonsensicality)。其次,研究者将常识的共性形式化为一个人群与主张之间的二部图,通过找到团簇来定义常识pq,即由比例为p的人共享的主张所占的比例q。在一个由2,046位评价者评估的4,407个主张的数据集上评估本文提出的框架,该研究发现常识性与明确陈述的、类似事实的有关日常物理现实的陈述最为接近。心理测量属性,如社交感知力,影响个体的常识,但令人惊讶的是年龄或性别等人口因素并不影响常识。最后,该研究发现集体常识(collective common sense)很少见:最多只有一小部分人在超过一小部分主张上达成一致。这些结果共同削弱了关于常识的普遍主义信念(universalist ),并对其变化性提出了相关问题,这对人类和人工智能都具有重要意义。

本文作者的目标是以一种超越个体偏见和不同观点的方式,对常识如何被定义、衡量和理解提供全新的视角,并在本文中通过提供一种解决常识固有循环性的方法,为对这一人类智能基本但难以捉摸的方面进行了广泛的实证研究开辟了道路。研究者预计这一工具将在未来的大规模研究中得到应用,进一步促进我们对常识及其在人类和人工智能中的作用的集体理解。

e460bb1f422597aa1e1182767a22c0a6.jpeg

图1 (A)一个密度图,显示具有边际分布的所有主张的共识和认知情况,其中对角虚线表示共识和认知的校准程度。在低端,是由于人群之间的分歧而实际上以随机判断为主的主张;而在高端,是完全符合常识的主张。(B)同样是一个密度图,显示所有个体的共识和认知情况。

5248abfb6c283e3df491fb58038f4b4e.jpeg

图2 基于主张属性的常识性,带有关于平均值的自助法95%兼容区间。(A)在具有和没有每个二元认识论属性的主张之间,自助法计算的常识性平均差异。每个主张都有每个属性的值,所以这个面板中的每一行都来自语料库中的所有主张。(B)每个知识类别中主张的常识性,用虚线表示跨类别的未加权平均值。每个主张属于一个知识类别,因此此面板中的所有行共同反映了语料库中的所有主张。(C)来自每个来源的主张的常识性。与B类似,整个面板反映了语料库中的所有主张。

afca32a3ca1d823141cd80bf65accde7.jpeg

图3 个体的常识性。以个体水平的人口统计属性为横轴,纵轴为常识性。红色条形图示出了总体平均值的95%兼容区间。收入以美元为单位。左列显示分组的数值变量;中间列按值排序显示名义变量;右列显示顺序变量。

2f7074cc327308f7b14100767e59a497.jpeg

图4 常识性阈值。(A)通过ECCDF图显示达到常识性阈值的主张的比例,按主张引发机制进行着色。灰色虚线曲线表示整个语料库的分布情况。(B)类似的ECCDF图显示达到该阈值的人群比例,按RME得分分为5个桶进行分组。

5ed6b4e98f6d0badd4bdc1d8a2decfb1.jpeg

图5 常识。(A)一个包含3个人和3个主张的信念图,显示每个人对每个主张的信念配置,并附带一个矩阵,显示这个图的形式化表示,其中最大团以灰色标出。人物1和2具有相同的信念配置,包括对主张A和B的相同信念。(B)在整个人群中对50个主张进行样本调查后,对于p,q所能达到的最大常识值pq。信念配置是通过一个多项式模型(F1=72.7%)对未观察到的值进行预测的。

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)大脑研究计划,构建互联网(城市)大脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。每日推荐范围未来科技发展趋势的学习型文章。目前线上平台已收藏上千篇精华前沿科技文章和报告。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

588627932cd182671e39759f914b0047.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值