北大校友张益唐:会将“朗道-西格尔零点猜想”彻底完成

98ca3539c9a04474b5decf03502d413f.jpeg

来源:数学与通识

10月15日,传奇数学家张益唐在知乎上发表文章与年轻人交流,首次讲述了此前从未公开过的诸多往事:小时候读过的介绍俄罗斯科学家罗蒙诺索夫的故事,科学家的坚持精神让其深受鼓舞;大学时代,导师潘承彪讲授素数问题的方式方法,让其对挑战高难度课题产生了兴趣。张益唐称,自己曾经“年少气盛”,现在“意气依然如是”,特别是对“朗道-西格尔零点猜想”的研究,未曾停下脚步。

e472d10878bc729b561e6c3c1df7b64f.jpeg

2022年数学家张益唐发表了《离散均值估计和朗道-西格尔零点》论文,这被认为是数学界近50年来最惊人的成就,虽然没有完全解决朗道-西格尔零点猜想,但这篇论文作为重要学术成果,极大地推进了这一领域的研究。

在这篇回答中,张益唐向外界回应了其研究的最新进展,称“很多朋友关心现在的进展,中间的确遇到过一些技术性障碍,但本质上我知道我能够把它做出来,我会坚持把这个问题彻底完成”。这一消息足够令整个数学业界感到兴奋,这或许意味着,随着一代代科研人不停地努力,“朗道-西格尔零点猜想”这一经典数学问题终将被得到验证。

2e36927ff59fa890311d8ddbb172d625.jpeg

这段内容来自2024年知乎“科学家问答”活动的一问一答。知乎答主、中国科协研究员、中国科大副教授李旭提出了“如何找到愿意为之奋斗一生的研究事业?”这一问题,张益唐选择了回答该问题。张益唐称这个问题因人而异,并讲述自己的故事给青年朋友们作为参考,“我选择了数学,并且把它当成了我的终身事业,我想这里有两个关键原因,一个是兴趣,一个是坚持”。 

f2771765ae1eff43bce83d59a19d65cb.jpeg

讲述个人对数学的兴趣时,张益唐称除去自己从小迷恋数学之外,也来自接受到的教育。

1982年至1985年间,张益唐于北京大学攻读硕士学位时,正是师从著名数学家潘承彪。张益唐在文章中回忆了首次见到这位导师就被教授素数问题的情形,“潘老师说,你们看这数论里这些问题都是做不出来的,但他讲了以后,确实会让人觉得非常有兴趣:为什么看起来那么简单的问题,大家会做不出来?”。

自此,张益唐便对数论问题产生了浓厚兴趣,也不畏于研究大而难的课题,这为其后续连续攻克孪生素数猜想和朗道-西格尔零点猜想埋下了伏笔。

张益唐对导师潘承彪有着深厚的情感。2022年,张益唐做客知乎与答主进行在线交流时,也讲述了与导师的一则趣事,就在《离散均值估计和朗道-西格尔零点》论文发表后做客北大时,导师潘承彪评价,“今天听了益唐讲的想法很清楚,这是一个重要的筛法新思想,有很大发展潜力,可实现起来很难”,听到导师的评价后,张益唐当即回复:“听了潘老师的肯定,比听一万个人的赞扬更有价值。”

从1978年进入大学求学再到1992年博士毕业,2013年完成了孪生素数猜想的证明,再到2022年取得朗道-西格尔零点猜想的重要进展,张益唐一直在研究数学中的经典难题。回答中,他讲述了自己博士毕业后靠打零工维持生活的细节故事,称“这反而使我有足够的时间去坚持数学的研究”,其还感恩于俄罗斯科学家罗蒙诺索夫对自己的激励。 

“如何找到愿意为之奋斗一生的研究事业”,是2024年知乎“以科学为方法”科学家问答特别策划之下的一个问题,这项活动旨在让科学、科技领域领军人物与知友们进行深度交流,共同追问那些“搅动当下,影响未来”的议题。在回答的最后,张益唐激励年轻人胆子更大一些,要勇于挑战难度更高的课题,“所谓创新,不就是做别人没做过的东西吗”。 

aa1f78dd8da38de852a30d831aea8968.jpeg

2022年,在发表《离散均值估计和朗道-西格尔零点》论文后,张益唐便来到知乎与用户们交流,他用了一句“庾信平生最萧瑟,暮年诗赋动江关”来讲述自己的心境,知友们回复他称“庾信文章老更成,凌云健笔意纵横”,在这篇回答中,他称真心希望这些聪明的年轻人真正能做出好的成果来证明你们的价值,“希望你们‘诗赋动江关’,‘健笔意纵横’,而不必等到暮年老成”。

33a95935d907fffa2321bcef18fb8d04.jpeg

未来知识库是“欧米伽未来研究所”建立的在线知识库平台,收藏的资料范围包括人工智能、脑科学、互联网、超级智能,数智大脑、能源、军事、经济、人类风险等等领域的前沿进展与未来趋势。目前拥有超过8000篇重要资料。每周更新不少于100篇世界范围最新研究资料。欢迎扫描二维码或点击本文左下角“阅读原文”进入。

ca655dbd13a42d665621946564ea22b2.png
### 回答1: 张益唐孪生素数证明是一种证明两个数是素数的方法。这个证明方法的基本思想是:如果两个数是孪生素数,那么这两个数必须满足一定的特殊关系。 具体的证明过程如下: 1. 首先,我们选定一个质数p,并确定两个孪生素数p1和p2,使得p1 + 2 = p2。 2. 接下来,我们证明p1和p2一定是素数。因为p1和p2都是p的倍数,因此它们不能是合数。 3. 我们再证明p1和p2不是偶数。如果p1是偶数,那么p2必然是奇数,这与p1 + 2 = p2矛盾。因此,p1和p2都是奇数,所以它们不可能是偶数。 4. 最后,我们证明p1和p2不是合数。由于p1和p2都是奇数,因此它们不能是合数。因此,p1和p2必然是素数。 通过这个证明过程,我们证明了张益唐孪生素数证明的正确性。 ### 回答2: 张益唐孪生素数证明是由中国数论学家张益唐提出的关于孪生素数的猜想,并成功证明该猜想的一条定理。孪生素数是指相差为2的两个素数,例如(3, 5)、(11, 13)等。张益唐的证明过程可以简要概括如下: 首先,张益唐利用了一个名为Linnik-Hua大定理的数论结果,该定理是关于素数分布的一个重要结论。 然后,他使用了特定的数学方法,包括解析数论中的L-函数和解析函数的性质。通过分析这些函数的性质,他得到了关于孪生素数的一些初步结论。 接着,他使用多重整周期函数和一对特殊的准周期解析函数。通过研究这些函数的周期性质,他进一步推导出关于孪生素数的一些重要结果。 最后,他利用了之前提到的Linnik-Hua大定理,将结果推广到更一般的情况。通过结合解析数论和准周期分析函数的方法,他最终证明了孪生素数存在无穷多对的结论。 张益唐孪生素数证明过程体现了他卓越的数学思维和深厚的数论知识。这个证明不仅仅是解决了一个数论问题,还为其他与素数相关的数学领域提供了有益的启示和参考。他的工作对于数论学科的发展具有重要意义,也为后人在数论研究中提供了新的思路和方法。 ### 回答3: 张益唐孪生素数证明过程是指,计算机科学家张益唐于2013年提出的数论问题,即是否存在无穷多个差为2的孪生素数(即相邻两个素数之差为2)。他提出了一个基于庞大素数素相关的证明方法。 该证明的主要思想是利用了已知的素数性质和大数理论。首先,张益唐证明了对于大于某个值的所有偶数n,存在两个素数p1和p2,满足p2-p1=n。然后,他引入了一个涉及大数的参数X和Y,并定义了一个形式化的算术表达式来说明这一点。 接下来,他通过研究X和Y的关系,以及素数定理和大质数的分布规律,运用了复杂的推理和计算过程,得出了如果存在一个x值,使得X的特定函数值小于Y,那么一定存在无穷多个差为2的孪生素数。 最后,张益唐通过计算机求解,找到了一个满足上述条件的特定x值,从而证明了存在无穷多个差为2的孪生素数。这个发现在世界数学界引起了广泛的关注和讨论,并对数论研究提供了新的思路和方法。 张益唐孪生素数证明过程的重要意义在于,它不仅证明了孪生素数的存在性问题,而且为数论领域提供了一种全新的证明方法,以及一系列关于素数的计算和研究技术。它对深入理解素数分布规律和解决其他数论问题具有重要的启示作用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值