张益唐的朗道-西格尔零点猜想的论文公布,专家认为该论文尚未完整解决零点猜想

今年10月份,华裔数学家、美国加利福尼亚大学圣巴巴拉分校数学系教授张益唐,在北京大学大纽约地区校友会“与数学家张益唐交流座谈”活动上透露已解决朗道-西格尔零点猜想(Landau-Siegel zeros conjecture)的消息,引发数学界关注。此前,张益唐曾承诺在未来几周发布论文,今天预览版论文已经公布在网上,有111页,满满当当全是表达式 (张益唐论文原文链接):

 

 

 

 

 

张益唐教授研究的这个猜想跟数学史上的一个重要问题有关,那就是黎曼猜想。后者是波恩哈德·黎曼于1859年提出,是关于黎曼zeta函数的零点分布的猜想,是百年来的一大数学难题,20世纪初提出的一些难题过去多数已经被证明或者否认。

素数分布一直是数论研究的中心问题。解析数论是数论中以解析方法作为其研究工具的一个分支。黎曼zeta函数和狄利克雷L-函数的各种分析性质是解析数论研究的重要理论基础。正如黎曼zeta函数的零点分布与素数分布之间有着深刻密切的联系,狄利克雷L-函数零点分布也在素数理论中发挥广泛而根本性的作用,与素数分布的诸多核心问题有着深刻的内蕴联系,如哥德巴赫猜想、孪生素数猜想等。

因为全体模D的狄利克雷特征的适当线性组合可以表示出模D算术级数的计数函数,所以狄利克雷L-函数与算术级数中的素数分布问题密切相关。对于固定的狄利克雷特征,黎曼zeta函数的解析性质大多容易推广到相应的狄利克雷L-函数上去。比如当特征是复特征时,其L-函数与黎曼zeta函数有类似的非零区域

但是,当特征是实原特征时,在区间

内至多可能存在一个一阶实零点,这里c是一个适当的正常数。朗道(Landau)和西格(Siegel)等在这一问题作出过重要贡献,这个可能存在的例外实零点被称为朗道-西格尔零点。

如果我们相信广义黎曼猜想,那么朗道-西格尔零点应该不存在。朗道-西格尔零点的研究非常重要,是解决很多数论问题的瓶颈。所谓的朗道-西格尔零点猜想断言,朗道-西格尔零点确实不存在。这是数论中长期悬而未决的重要猜想。一旦证明了朗道-西格尔零点猜想,就可以取得很多新突破,简化和加强很多经典数论结果。张益唐教授在最新预印本论文里证明了,模D的实原特征L-函数在区间

内没有实零点,这里c是绝对实效正常数。如果把这里的2024换成1,就得到原始形式的朗道-西格尔零点猜想。2024虽然大于1,但在数学意义上,与1并没有实质性的差别。

张益唐新论文已向预印本网站提交

11月5日,张益唐攻克朗道-西格尔零点猜想的论文已经从网上流出(张益唐论文原文链接)。同日,北京国际数学研究中心主任田刚院士证实,张益唐有关朗道-西格尔零点猜想的新论文已完成并已提交至预印本网站arxiv,预计下周一会正式上线。

张益唐主要研究数论方向,他还是北京大学闵嗣鹤数论研究中心名誉主任、北京大学客座教授,山东大学潘承洞数学研究所所长。

11月5日,张益唐也参加了山东大学举行的一场学术报告活动和一场学术沙龙活动。在学术报告活动中,张益唐带来了他关于朗道-西格尔零点猜想的最新成果。

同日,上述数论学者从同行处获得了张益唐的论文《离散平均估计和朗道-西格尔零点》(Discrete mean estimates and the Landau-Siegel zero)的电子版。

早在2007年5月,张益唐就曾在预印本网站arxiv提交了一篇标题为《论朗道-西格尔零点猜想》(On the Landau-Siegel Zeros Conjecture)论文,但里面的论证有些缺陷。

张益唐2007年论文 

朗道-西格尔零点猜想是否已解决?

张益唐新论文是否已解决朗道-西格尔零点猜想?这是当前最受外界关注的问题。

对此,看过张益唐的新论文后,上述数论学者指出,张益唐新论文对其2007年挂到arxiv上的论文进行了完善。一方面,张益唐新论文的结果较该领域以往研究结果有革命性改进;另一方面,这个结果没有好到“吓人”的程度。

“新论文尚未完整证明朗道-西格尔零点不存在,所以张益唐现阶段并没有完整解决朗道-西格尔零点猜想。同时,从张益唐的论文来看,其当前研究路线很可能无法最终解决朗道-西格尔零点猜想。”该数论学者认为,虽然这个结果证明不了朗道-西格尔零点猜想,但其“强度”已经足以在极大范围上排除西格尔零点。这种范围对于解析数论学者来说,足够将其应用到数论问题中,并得到大量有意义的结论。

该数论学者进一步解释道,以往的很多论文,要假设朗道-西格尔零点猜想成立(也即假设西格尔零点不存在);张益唐的新论文虽然没有排除掉西格尔零点存在的可能性,但其排除掉的范围足够涵盖很多以往论文所需的范围。这使得以前的很多结果从假设性结果变成了确定性结果。

“当然,该论文需要专业人士进一步验证。论文从2007年版的54页扩到现在2022年版的111页,审稿会是一个大工作。”该数论学者说,“像这种论文,即使是顶尖的专业人士,把论文全部细节推一遍也得几个月,所以很难很快下定论。”

田刚院士也表示,张益唐的这篇论文很长,预计需要专家通过较长时间来完成论文评审工作。

关于朗道—西格尔零点猜想,《中国科学报》今年10月曾发文作介绍:该猜想与已经悬置160多年的著名数学难题“黎曼猜想”相关。简单说,如果存在朗道-西格尔零点,那么黎曼猜想就是错的;如果朗道-西格尔零点不存在,则不会和黎曼猜想发生冲突。无论是哪种结果,无疑都是数学史上里程碑式的事件。张益唐的同事、数论学家Stopple曾说,如果张益唐能对此作出证明,那么加上他的上一份成就,在某种意义上,(其概率)就像是同一个人被闪电劈中两次。“如果他从未成名,那么做出这项工作也会让他跟上次一样被世界瞩目。”

张益唐的“上一份成就”是,2013年在《数学年刊》发表《质数间的有界间隔》,证明了存在无穷多对质数间隙都小于7000万,从而在孪生素数猜想这一数论重大难题上取得重要突破。

 

数据集介绍:多类路车辆目标检测数据集 一、基础信息 数据集名称:多类路车辆目标检测数据集 图片数量: - 训练集:7,325张图片 - 验证集:355张图片 - 测试集:184张图片 总计:7,864张路场景图片 分类类别: - Bus(公交车):城市路与高速场景中的大型公共交通工具 - Cars(小型汽车):涵盖轿车、SUV等常见乘用车型 - Motorbike(摩托车):两轮机动车辆,含不同骑行姿态样本 - Truck(卡车):包含中型货运车辆与重型运输卡车 标注格式: YOLO格式标注,包含归一化坐标的边界框与类别标签,适配主流目标检测框架。 数据特性: 覆盖多种光照条件与路场景,包含车辆密集分布与复杂背景样本。 二、适用场景 自动驾驶感知系统开发: 用于训练车辆识别模块,提升自动驾驶系统对路参与者的实时检测与分类能力。 交通流量监控分析: 支持构建智能交通管理系统,实现路车辆类型统计与密度分析。 智慧城市应用: 集成至城市级交通管理平台,优化信号灯控制与路资源分配。 学术研究领域: 为计算机视觉算法研究提供标准化评测基准,支持多目标检测模型优化。 三、数据集优势 高场景覆盖率: 包含城市路、高速公路等多种驾驶环境,覆盖车辆静止、行驶、遮挡等现实场景。 精细化标注体系: 采用YOLO标准格式标注,每张图片均经过双重质检,确保边界框与类别标签的精准对应。 类别平衡设计: 四类车辆样本量经科学配比,避免模型训练时的类别偏向问题。 工程适配性强: 可直接应用于YOLO系列模型训练,支持快速迁移至车载计算平台部署。 现实应用价值: 专注自动驾驶核心检测需求,为车辆感知模块开发提供高质量数据支撑。
内容概要:本文介绍了DeepSeek与Mermaid结合实现可视化图表自动化生成的技术及其应用场景。DeepSeek是一款由杭州深度求索人工智能基础技术研究有限公司开发的大语言模型,具有强大的自然语言处理能力,能理解复杂的自然语言指令并生成对应的Mermaid代码。Mermaid是一款基于文本的开源图表绘制工具,能够将简洁的文本描述转化为精美的流程图、序列图、甘特图等。两者结合,通过DeepSeek将自然语言转化为Mermaid代码,再由Mermaid将代码渲染成直观的图表,极大提高了图表制作的效率和准确性。文章详细描述了DeepSeek的发展历程、技术架构及应用场景,Mermaid的基础语法和图表类型,并通过一个电商平台开发项目的实战演练展示了二者结合的具体应用过程。 适合人群:具备一定编程基础和技术理解能力的研发人员、项目经理、数据分析师等。 使用场景及目标:①需求分析阶段,快速生成业务流程图和功能关系图;②设计阶段,生成系统架构图和数据库设计图;③实现阶段,辅助代码编写,提高编码效率;④验证阶段,生成测试用例和测试报告图表,直观展示测试结果。 阅读建议:在学习和使用DeepSeek与Mermaid的过程中,建议读者结合具体项目需求,多实践生成图表和代码,熟悉两者的交互方式和使用技巧,充分利用官方文档和社区资源解决遇到的问题,逐步提高图表绘制和代码编写的准确性和效率。
### 回答1: 张益唐孪生素数证明是一种证明两个数是素数的方法。这个证明方法的基本思想是:如果两个数是孪生素数,那么这两个数必须满足一定的特殊关系。 具体的证明过程如下: 1. 首先,我们选定一个质数p,并确定两个孪生素数p1和p2,使得p1 + 2 = p2。 2. 接下来,我们证明p1和p2一定是素数。因为p1和p2都是p的倍数,因此它们不能是合数。 3. 我们再证明p1和p2不是偶数。如果p1是偶数,那么p2必然是奇数,这与p1 + 2 = p2矛盾。因此,p1和p2都是奇数,所以它们不可能是偶数。 4. 最后,我们证明p1和p2不是合数。由于p1和p2都是奇数,因此它们不能是合数。因此,p1和p2必然是素数。 通过这个证明过程,我们证明了张益唐孪生素数证明的正确性。 ### 回答2: 张益唐孪生素数证明是由中国数论学家张益唐提出的关于孪生素数的猜想,并成功证明该猜想的一条定理。孪生素数是指相差为2的两个素数,例如(3, 5)、(11, 13)等。张益唐的证明过程可以简要概括如下: 首先,张益唐利用了一个名为Linnik-Hua大定理的数论结果,该定理是关于素数分布的一个重要结论。 然后,他使用了特定的数学方法,包括解析数论中的L-函数和解析函数的性质。通过分析这些函数的性质,他得到了关于孪生素数的一些初步结论。 接着,他使用多重整周期函数和一对特殊的准周期解析函数。通过研究这些函数的周期性质,他进一步推导出关于孪生素数的一些重要结果。 最后,他利用了之前提到的Linnik-Hua大定理,将结果推广到更一般的情况。通过结合解析数论和准周期分析函数的方法,他最终证明了孪生素数存在无穷多对的结论。 张益唐孪生素数证明过程体现了他卓越的数学思维和深厚的数论知识。这个证明不仅仅是解决了一个数论问题,还为其他与素数相关的数学领域提供了有益的启示和参考。他的工作对于数论学科的发展具有重要意义,也为后人在数论研究中提供了新的思路和方法。 ### 回答3: 张益唐孪生素数证明过程是指,计算机科学家张益唐于2013年提出的数论问题,即是否存在无穷多个差为2的孪生素数(即相邻两个素数之差为2)。他提出了一个基于庞大素数素相关的证明方法。 该证明的主要思想是利用了已知的素数性质和大数理论。首先,张益唐证明了对于大于某个值的所有偶数n,存在两个素数p1和p2,满足p2-p1=n。然后,他引入了一个涉及大数的参数X和Y,并定义了一个形式化的算术表达式来说明这一点。 接下来,他通过研究X和Y的关系,以及素数定理和大质数的分布规律,运用了复杂的推理和计算过程,得出了如果存在一个x值,使得X的特定函数值小于Y,那么一定存在无穷多个差为2的孪生素数。 最后,张益唐通过计算机求解,找到了一个满足上述条件的特定x值,从而证明了存在无穷多个差为2的孪生素数。这个发现在世界数学界引起了广泛的关注和讨论,并对数论研究提供了新的思路和方法。 张益唐孪生素数证明过程的重要意义在于,它不仅证明了孪生素数的存在性问题,而且为数论领域提供了一种全新的证明方法,以及一系列关于素数的计算和研究技术。它对深入理解素数分布规律和解决其他数论问题具有重要的启示作用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值