1. Zynq™ 7000 SoC
- 上市时间: 2011 年。
- 架构: 采用 ARM Cortex-A9 双核处理器 + 28nm 可编程逻辑。
- 主要特点:
- 紧凑型设计,将处理器和 FPGA 结合在一个芯片上。
- 针对嵌入式应用的高效性能,例如工业自动化、通信和医疗设备。
- 支持丰富的外设接口(如 USB、Ethernet、SPI 等)。
- 使用范围:
- 物联网 (IoT) 和边缘计算。
- 实时控制系统。
- 工业自动化设备和智能相机。
- 目标用户: 设计预算较低、需要高效但简单异构计算的用户。
2. Zynq UltraScale+™ MPSoC
- 上市时间: 2016 年。
- 架构: 采用 ARM Cortex-A53 四核 + Cortex-R5 双核 + 16nm 可编程逻辑。
- 主要特点:
- 更强的处理能力,支持 64 位计算。
- 包括视频处理单元 (VPU)、高效能图形处理单元 (GPU)。
- 提供更高的安全性(支持加密和认证)。
- 支持多核系统实时和非实时应用的混合运行。
- 使用范围:
- 高端嵌入式系统,例如高级驾驶辅助系统 (ADAS)。
- 视频处理、通信基础设施。
- 医疗成像和航空航天。
- 目标用户: 需要更强处理能力、安全性和多核应用能力的用户。
3. Zynq UltraScale+™ RFSoC
- 上市时间: 2017 年。
- 架构: 基于 UltraScale+ MPSoC,集成了高性能射频模数转换器 (RF-ADC) 和数模转换器 (RF-DAC)。
- 主要特点:
- 直接支持 RF 信号处理,无需外部 RF 前端设备。
- 支持高达 GHz 的带宽和采样速率。
- 包含射频、数字信号处理和 ARM 处理器。
- 适用于低功耗、高性能的无线应用。
- 使用范围:
- 5G 通信、雷达和卫星通信。
- 高性能电子战系统。
- 软件定义无线电 (SDR) 和宽带接收器。
- 目标用户: 开发射频应用的用户,尤其是在国防、通信等高性能领域。
4. Versal™ 自适应 SoC
- 上市时间: 2019 年。
- 架构: 基于 7nm 工艺,包含:
- Adaptable Engines(FPGA 可编程逻辑)。
- Scalar Engines(Cortex-A72、Cortex-R5F)。
- AI Engines(专用 AI 加速器阵列)。
- 主要特点:
- 专为 AI 加速、大数据处理和边缘计算设计。
- 具有动态可重配置能力。
- 内置高性能通信接口(如 PCIe Gen4、100G Ethernet)。
- 支持实时和非实时应用的协同运行。
- 使用范围:
- 人工智能推理、机器学习。
- 5G 基站、数据中心。
- 医疗诊断、自动驾驶。
- 目标用户: 需要高性能计算和 AI 加速的用户。
主要差异对比表
特性 | Zynq 7000 SoC | Zynq UltraScale+ MPSoC | Zynq UltraScale+ RFSoC | Versal 自适应 SoC |
---|---|---|---|---|
上市时间 | 2011 | 2016 | 2017 | 2019 |
工艺 | 28nm | 16nm | 16nm | 7nm |
ARM 核心 | Cortex-A9 (32-bit) | Cortex-A53/A-R5 (64-bit) | Cortex-A53/A-R5 (64-bit) | Cortex-A72/A-R5 (64-bit) |
FPGA 工程能力 | 基本 | 高性能 | 高性能 + RF 集成 | 动态可重配置 |
独特特性 | 嵌入式设计简单高效 | 多核异构计算 | 集成 RF 信号处理 | AI 加速与动态优化 |
目标市场 | 工业和物联网 | 高端嵌入式和通信设备 | 通信、国防和雷达系统 | AI、大数据、5G、自动驾驶 |