LSTM(长短时间记忆模型)的详细推导



概述

循环神经网络RNN详细推导中,已经说明了RNN并不能很好的处理较长的序列。一个主要的原因是,RNN在训练中很容易发生梯度消失,这导致训练时梯度不能在较长序列中一直传递下去,从而使RNN无法捕捉到长距离的影响。所以,有学者就提出了LSTM来解决梯度消失的问题。

一、从RNN到LSTM

原始RNN的隐藏层只有一个状态,即 h h h,它对于短期的输入非常敏感。所以,就假设再增加一个状态 c c c,让它来保存长期的状态,如下图所示:
在这里插入图片描述
新增加的状态c,称为单元状态(cell state)。把上图按照时间维度展开:
在这里插入图片描述
上图仅仅是一个示意图,可以看出,在 t t t时刻,LSTM的输入有三个:当前时刻网络的输入值 x t x_t xt、上一时刻LSTM的输出值、以及上一时刻的单元状态;LSTM的输出有两个:当前时刻LSTM输出值、和当前时刻的单元状态。需要注意的是,他们都是向量。

LSTM的关键,就是怎样控制长期状态 c c c。在这里,LSTM的思路是使用三个控制开关。第一个开关,负责控制继续保存长期状态c;第二个开关,负责控制把即时状态输入到长期状态c;第三个开关,负责控制是否把长期状态c作为当前的LSTM的输出。三个开关的作用如下图所示:
在这里插入图片描述

二、LSTM模型结构剖析

LSTM的结构如下:
在这里插入图片描述
下边,就来看一下具体的每个门吧:

2.1 LSTM之遗忘门

遗忘门(forget gate),在LSTM中是以一定的概率控制是否遗忘上一层的隐藏细胞状态。遗忘门子结构如下图所示:
 在这里插入图片描述
 图中输入的有上时刻的隐藏状态 h ( t − 1 ) h^{(t−1)} h(t1)和本序列数据 x ( t ) x^{(t)} x(t),通过一个激活函数,一般是sigmoid,得到遗忘门的输出 f ( t ) f^{(t)} f(t)。由于sigmoid的输出 f ( t ) f^{(t)} f(t)在[0,1]之间,因此这里的输出 f ( t ) f^{(t)} f(t)代表了遗忘上一层隐藏细胞状态的概率。用数学表达式即为:
  f ( t ) = σ ( W f h ( t − 1 ) + U f x ( t ) + b f ) f(t)=σ(W_fh^{(t−1)}+U_fx^{(t)}+b_f) f(t)=σ(Wfh(t1)+Ufx(t)+bf)
 其中 W f , U f , b f W_f,U_f,b_f Wf,Uf,bf为线性关系的系数和偏倚,和RNN中的类似。 σ σ σ为sigmoid激活函数。

2.2 LSTM之输入门

输入门(input gate)负责处理当前序列位置的输入,它的子结构如下图:
在这里插入图片描述
从图中可以看到输入门由两部分组成,第一部分使用了sigmoid激活函数,输出为 i ( t ) i(t) i(t),第二部分使用了 t a n h tanh tanh激活函数,输出为 c ′ ( t ) c'(t) c(t), 两者的结果后面会相乘再去更新细胞状态。用数学表达式即为:

i ( t ) = σ ( W i h ( t − 1 ) + U i x ( t ) + b i ) i^{(t)}=σ(W_ih^{(t−1)}+U_ix^{(t)}+b_i) i(t)=σ(Wih(t1)+Uix(t)+bi)

c ′ ( t ) = t a n h ( W c h ( t − 1 ) + U c x ( t ) + b c ) c'^{(t)}=tanh(W_ch^{(t−1)}+U_cx^{(t)}+b_c) c(t)=tanh(Wch(t1)+Ucx(t)+bc)

其中 W i , U i , b i , W c , U c , b c W_i,U_i,b_i,W_c,U_c,b_c Wi,Ui,bi,Wc,Uc,bc,为线性关系的系数和偏置,和RNN中的类似。 σ σ σ为sigmoid激活函数。

2.3 LSTM之细胞状态更新

在研究LSTM输出门之前,我们要先看看LSTM之细胞状态。前面的遗忘门和输入门的结果都会作用于细胞状态 C ( t ) C^{(t)} C(t)。我们来看看从细胞状态 C ( t − 1 ) C^{(t−1)} C(t1)如何得到 C ( t ) C^{(t)} C(t)。如下图所示:
在这里插入图片描述
细胞状态 C ( t ) C^{(t)} C(t)由两部分组成,第一部分是 C ( t − 1 ) C^{(t−1)} C(t1)和遗忘门输出 f ( t ) f^{(t)} f(t)的乘积,第二部分是输入门的 i ( t ) i^{(t)} i(t) a ( t ) a^{(t)} a(t)的乘积,即:

C ( t ) = C ( t − 1 ) ⊙ f ( t ) + i ( t ) ⊙ a ( t ) C^{(t)}=C^{(t−1)}⊙f^{(t)}+i^{(t)}⊙a^{(t)} C(t)=C(t1)f(t)+i(t)a(t)

其中,⊙为Hadamard积,即:向量元素对应相乘。

2.4 LSTM之输出门

有了新的隐藏细胞状态 C ( t ) C^{(t)} C(t),我们就可以来看输出门了,子结构如下:
在这里插入图片描述
从图中可以看出,隐藏状态 h ( t ) h^{(t)} h(t)的更新由两部分组成,第一部分是 o ( t ) o^{(t)} o(t), 它由上一序列的隐藏状态 h ( t − 1 ) h^{(t−1)} h(t1)和本序列数据 x ( t ) x^{(t)} x(t),以及激活函数sigmoid得到,第二部分由隐藏状态 C ( t ) C^{(t)} C(t) t a n h tanh tanh激活函数组成, 即:

o ( t ) = σ ( W o h ( t − 1 ) + U o x ( t ) + b o ) o^{(t)}=σ(W_oh^{(t−1)}+U_ox^{(t)}+b_o) o(t)=σ(Woh(t1)+Uox(t)+bo)

h ( t ) = o ( t ) ⊙ t a n h ( C ( t ) ) h^{(t)}=o^{(t)}⊙tanh(C^{(t)}) h(t)=o(t)tanh(C(t))

到这里,已经弄个清楚了LSTM的输入们、遗忘门、细胞更新和输出门了。接下来,就来推导一下LSTM的前向传播。

三、 LSTM前向传播算法

现在我们来总结下LSTM前向传播算法。LSTM模型有两个隐藏状态 h ( t ) h^{(t)} h(t), C ( t ) C^{(t)} C(t),模型参数几乎是RNN的4倍,因为现在多了 W f W_f Wf, U f U_f Uf, b f b_f bf, W c W_c Wc, U c U_c Uc, b c b_c bc, W i W_i Wi, U i U_i Ui, b i b_i bi, W o W_o Wo, U o U_o Uo, b o b_o bo这些参数。

前向传播过程在每个时刻的过程为:

1)更新遗忘门输出:
f ( t ) = σ ( W f h ( t − 1 ) + U f x ( t ) + b f ) f^{(t)}=σ(W_fh^{(t−1)}+U_fx^{(t)}+b_f) f(t)=σ(Wfh(t1)+Ufx(t)+bf)

2)更新输入门两部分输出:
i ( t ) = σ ( W i h ( t − 1 ) + U i x ( t ) + b i ) i^{(t)}=σ(W_ih^{(t−1)}+U_ix^{(t)}+b_i) i(t)=σ(Wih(t1)+Uix(t)+bi)

c ′ ( t ) = t a n h ( W c h ( t − 1 ) + U c x ( t ) + b c ) c'^{(t)}=tanh(W_ch^{(t−1)}+U_cx^{(t)}+b_c) c(t)=tanh(Wch(t1)+Ucx(t)+bc)

3)更新细胞状态:
C ( t ) = C ( t − 1 ) ⊙ f ( t ) + i ( t ) ⊙ a ( t ) C^{(t)}=C^{(t−1)}⊙f^{(t)}+i^{(t)}⊙a^{(t)} C(t)=C(t1)f(t)+i(t)a(t)

4)更新输出门输出:
o ( t ) = σ ( W o h ( t − 1 ) + U o x ( t ) + b o ) o^{(t)}=σ(W_oh^{(t−1)}+U_ox^{(t)}+b_o) o(t)=σ(Woh(t1)+Uox(t)+bo)

h ( t ) = o ( t ) ⊙ t a n h ( C ( t ) ) h^{(t)}=o^{(t)}⊙tanh(C^{(t)}) h(t)=o(t)tanh(C(t))

5)更新当前时刻预测输出:
y ^ ( t ) = σ ( V h ( t ) + c ) \hat{y}^{(t)}=σ(Vh^{(t)}+c) y^(t)=σ(Vh(t)+c)

四、 LSTM反向传播算法

有了LSTM前向传播算法,接下来推导反向传播算法, 思路和RNN的反向传播算法思路一致,也是通过梯度下降法迭代更新所有的参数,关键点在于计算所有参数基于损失函数的偏导数。

在RNN中,为了反向传播误差,我们通过隐藏状态 h ( t ) h(t) h(t)的梯度 δ ( t ) δ^{(t)} δ(t)一步步向前传播。在LSTM这里也类似。只不过我们这里有两个隐藏状态 h ( t ) h^{(t)} h(t) C ( t ) C^{(t)} C(t)。这里我们定义两个 δ δ δ,即:

δ ( t ) h = ∂ L ∂ h ( t ) δ(t)h=\frac{∂L}{∂h^{(t)}} δ(t)h=h(t)L

δ ( t ) C = ∂ L ∂ C ( t ) δ(t)C=\frac{∂L}{∂C^{(t)}} δ(t)C=C(t)L

为了便于推导,我们将损失函数 L ( t ) L(t) L(t)分成两块,一块是时刻t的损失 l ( t ) l(t) l(t),另一块是时刻t之后损失 L ( t + 1 ) L(t+1) L(t+1),即:
y = { l ( t ) + L ( t + 1 ) ( t &lt; τ ) l ( t ) ( t = τ ) y= \begin{cases} l(t)+L(t+1)&amp; (t&lt;τ)\\ l(t)&amp; (t=τ) \end{cases} y={l(t)+L(t+1)l(t)(t<τ)(t=τ)

而在最后的时刻 τ τ τ δ h ( τ ) δ^{(τ)}_h δh(τ) δ C ( τ ) δ^{(τ)}_C δC(τ)为:
δ h ( τ ) = ( ∂ O ( τ ) ∂ h ( τ ) ) T ∂ L ( τ ) ∂ O ( τ ) = V T ( y ^ ( τ ) − y ( τ ) ) δ^{(τ)}_h=(\frac{∂O(τ)}{∂h(τ)})^T\frac{∂L(τ)}{∂O(τ)}=V^T(\hat{y}^{(τ)}−y^{(τ)}) δh(τ)=(h(τ)O(τ))TO(τ)L(τ)=VT(y^(τ)y(τ))

δ C ( τ ) = ( ∂ h ( τ ) ∂ C ( τ ) ) T ∂ L ( τ ) ∂ h ( τ ) = δ h ( τ ) ⊙ o ( τ ) ⊙ ( 1 − t a n h 2 ( C ( τ ) ) ) δ^{(τ)}_C=(\frac{∂h(τ)}{∂C(τ)})^T\frac{∂L(τ)}{∂h(τ)}=δ^{(τ)}_h⊙o^{(τ)}⊙(1−tanh^2(C^{(τ)})) δC(τ)=(C(τ)h(τ))Th(τ)L(τ)=δh(τ)o(τ)(1tanh2(C(τ)))

接着我们由 δ C ( t + 1 ) δ^{(t+1)}_C δC(t+1), δ h ( t + 1 ) δ^{(t+1)}_h δh(t+1)反向推导 δ h ( t ) δ^{(t)}_h δh(t), δ C ( t ) δ^{(t)}_C δC(t)

δ h ( t ) δ^{(t)}_h δh(t)的梯度由本层t时刻的输出梯度误差和大于t时刻的误差两部分决定,即:
δ h ( t ) = ∂ L ∂ h ( t ) = ∂ l ( t ) ∂ h ( t ) + ( ∂ h ( t + 1 ) ∂ h ( t ) ) T ∂ L ( t + 1 ) ∂ h ( t + 1 ) = V T ( ( ^ y ) ( t ) − y ( t ) ) + ( ∂ h ( t + 1 ) ∂ h ( t ) ) T δ h ( t + 1 ) δ^{(t)}_h=\frac{∂L}{∂h^{(t)}}=\frac{∂l^{(t)}}{∂h(t)}+(\frac{∂h^{(t+1)}}{∂h^{(t)}})^T\frac{∂L^{(t+1)}}{∂h^{(t+1)}}=V^T(\hat(y)^{(t)}−y^{(t)})+(\frac{∂h^{(t+1)}}{∂h(t)})^Tδ^{(t+1)}_h δh(t)=h(t)L=h(t)l(t)+(h(t)h(t+1))Th(t+1)L(t+1)=VT((^y)(t)y(t))+(h(t)h(t+1))Tδh(t+1)

整个LSTM反向传播的难点就在于 ∂ h ( t + 1 ) ∂ h ( t ) \frac{∂h^{(t+1)}}{∂h^{(t)}} h(t)h(t+1)这部分的计算。仔细观察,由于 h ( t ) = o ( t ) ⊙ t a n h ( C ( t ) ) h^{(t)}=o^{(t)}⊙tanh(C^{(t)}) h(t)=o(t)tanh(C(t)), 在第一项 o ( t ) o^{(t)} o(t)中,包含一个 h h h的递推关系,第二项 t a n h ( C ( t ) ) tanh(C^{(t)}) tanh(C(t))就复杂了, t a n h tanh tanh函数里面又可以表示成:
C ( t ) = C ( t − 1 ) ⊙ f ( t ) + i ( t ) ⊙ a ( t ) C^{(t)}=C^{(t−1)}⊙f^{(t)}+i^{(t)}⊙a^{(t)} C(t)=C(t1)f(t)+i(t)a(t)

t a n h tanh tanh 函数的第一项中, f ( t ) f^{(t)} f(t)包含一个 h h h的递推关系,在 t a n h tanh tanh函数的第二项中, i ( t ) i^(t) i(t) a ( t ) a^(t) a(t)都包含 h h h的递推关系,因此,最终 ∂ h ( t + 1 ) ∂ h ( t ) \frac{∂h(t+1)}{∂h(t)} h(t)h(t+1)这部分的计算结果由四部分组成。即:

Δ C = o ( t + 1 ) ⊙ [ 1 − t a n h 2 ( C ( t + 1 ) ) ] ΔC=o^{(t+1)}⊙[1−tanh^2(C^{(t+1)})] ΔC=o(t+1)[1tanh2(C(t+1))]

∂ h ( t + 1 ) ∂ h ( t ) = W o T [ o ( t + 1 ) ⊙ ( 1 − o ( t + 1 ) ) ⊙ t a n h ( C ( t + 1 ) ) ] + W f T [ Δ C ⊙ f ( t + 1 ) ⊙ ( 1 − f ( t + 1 ) ) ⊙ C ( t ) ] + W c T Δ C ⊙ i ( t + 1 ) ⊙ [ 1 − ( c ( t + 1 ) ) 2 ] + W i T [ Δ C ⊙ c ( t + 1 ) ⊙ i ( t + 1 ) ⊙ ( 1 − i ( t + 1 ) ) ] \frac{∂h^{(t+1)}}{∂h(t)}=W^T_o[o^{(t+1)}⊙(1−o^{(t+1)})⊙tanh(C^{(t+1)})]+W^T_f[ΔC⊙f^{(t+1)}⊙(1−f^{(t+1)})⊙C^{(t)}]+W^T_c{ΔC⊙i^{(t+1)}⊙[1−(c^{(t+1)})^2]}+W^T_i[ΔC⊙c^{(t+1)}⊙i^{(t+1)}⊙(1−i^{(t+1)})] h(t)h(t+1)=WoT[o(t+1)(1o(t+1))tanh(C(t+1))]+WfT[ΔCf(t+1)(1f(t+1))C(t)]+WcTΔCi(t+1)[1(c(t+1))2]+WiT[ΔCc(t+1)i(t+1)(1i(t+1))]

δ C ( t ) δ^{(t)}_C δC(t)的反向梯度误差由前一层 δ C ( t + 1 ) δ^{(t+1)}_C δC(t+1)的梯度误差和本层的从 h ( t ) h^{(t)} h(t)传回来的梯度误差两部分组成,即:

δ C ( t ) = ( ∂ C ( t + 1 ) ∂ C ( t ) ) T ∂ L ∂ C ( t + 1 ) + ( ∂ h ( t ) ∂ C ( t ) ) T ∂ L ∂ h ( t ) = ( ∂ C ( t + 1 ) ∂ C ( t ) ) T δ C ( t + 1 ) + δ h ( t ) ⊙ o ( t ) ⊙ ( 1 − t a n h 2 ( C ( t ) ) ) = δ C ( t + 1 ) ⊙ f ( t + 1 ) + δ h ( t ) ⊙ o ( t ) ⊙ ( 1 − t a n h 2 ( C ( t ) ) ) δ^{(t)}_C=(\frac{∂C^{(t+1)}}{∂C^{(t)}})^T\frac{∂L}{∂C^{(t+1)}}+(\frac{∂h^{(t)}}{∂C^{(t)}})^T\frac{∂L}{∂h^{(t)}}=(\frac{∂C^{(t+1)}}{∂C^{(t)}})^Tδ^{(t+1)}_C+δ^{(t)}_h⊙o^{(t)}⊙(1−tanh^2(C^{(t)}))=δ^{(t+1)}_C⊙f^{(t+1)}+δ^{(t)}_h⊙o^{(t)}⊙(1−tanh^2(C^{(t)})) δC(t)=(C(t)C(t+1))TC(t+1)L+(C(t)h(t))Th(t)L=(C(t)C(t+1))TδC(t+1)+δh(t)o(t)(1tanh2(C(t)))=δC(t+1)f(t+1)+δh(t)o(t)(1tanh2(C(t)))

有了 δ h ( t ) δ^{(t)}_h δh(t) δ C ( t ) δ^{(t)}_C δC(t), 计算这一大堆参数的梯度就很容易了,这里只给出 W f W_f Wf的梯度计算过程,其他的 U f U_f Uf, b f b_f bf, W c W_c Wc, U c U_c Uc, b c b_c bc, W i W_i Wi, U i U_i Ui, b i b_i bi, W o W_o Wo, U o U_o Uo, b o b_o bo V V V, c c c的梯度大家只要照搬就可以了。
 
∂ L ∂ W f = ∑ t = 1 τ [ δ C ( t ) ⊙ C ( t − 1 ) ⊙ f ( t ) ⊙ ( 1 − f ( t ) ) ] ( h ( t − 1 ) ) T \frac{∂L}{∂W_f}=\sum_{t=1}^{τ}[δ^{(t)}_C⊙C^{(t−1)}⊙f^{(t)}⊙(1−f^{(t)})](h^{(t−1)})^T WfL=t=1τ[δC(t)C(t1)f(t)(1f(t))](h(t1))T

五、LSTM总结

LSTM虽然结构复杂,但是只要理顺了里面的各个部分和之间的关系,进而理解前向反向传播算法是不难的。当然实际应用中LSTM的难点不在前向反向传播算法,这些有算法库帮你搞定,模型结构和一大堆参数的调参才是让人头痛的问题。后边,会继续更新有关于用tensorflow实现LSTM的文章!

六、项目实战

项目实战请转至:tensorflow学习笔记(八):LSTM手写体(MNIST)识别

  • 5
    点赞
  • 52
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
LSTM短时记忆模型)是一种循环神经网络(RNN)的变体,它在处理序列数据时具有优秀的性能。LSTM通过使用门控机制来解决传统RNN中的梯度消失和梯度爆炸问题,从而能够更好地捕捉期依赖关系。 LSTM模型的结构包括遗忘门、输入门、细胞状态更新和输出门。遗忘门决定了前一时刻的细胞状态中哪些信息需要被遗忘,输入门决定了当前时刻的输入信息中哪些信息需要被记忆,细胞状态更新通过将遗忘门和输入门的结果相加来更新细胞状态,输出门决定了当前时刻的输出信息。 LSTM的前向传播算法通过逐个时间步骤地计算遗忘门、输入门、细胞状态更新和输出门来得到最终的输出。反向传播算法则通过计算损失函数对参数的梯度来更新模型的参数。 以下是一个LSTM模型的示例代码: ```python import torch import torch.nn as nn # 定义LSTM模型 class LSTMModel(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(LSTMModel, self).__init__() self.hidden_size = hidden_size self.lstm = nn.LSTM(input_size, hidden_size) self.fc = nn.Linear(hidden_size, output_size) def forward(self, input): output, _ = self.lstm(input) output = self.fc(output[-1]) return output # 定义输入数据 input_size = 10 hidden_size = 20 output_size = 1 input = torch.randn(5, 3, input_size) # 输入数据维度为(序列度, batch大小, 特征维度) # 创建LSTM模型实例 model = LSTMModel(input_size, hidden_size, output_size) # 进行前向传播 output = model(input) print(output) ``` 这是一个简单的LSTM模型,其中包括一个LSTM层和一个全连接层。你可以根据自己的需求调整模型的参数和输入数据的维度。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值