StructComp Substituting propagation with Structural Compression in Training Graph Contrastive Learni

发表于:ICML24
推荐指数: #paper/⭐
领域:大图学习
主要思路:
1.将邻接矩阵分解 A ^ k = C C T \hat{A}^k=CC^T A^k=CCT以此来加速图传播过程(如果A是 n ∗ n n*n nn,那么P: n ∗ n ′ n*n' nn,高阶的A就可以变为:)
2.提出基于C的图增广

主要过程

1.加速
minimize ∥ P ′ P T − A ^ k ∥ , subject to P ′ ∈ { 0 , 1 } n × n ′ , P ′ 1 n ′ = 1 n . \begin{aligned}&\text{minimize}\quad\|P^{\prime}P^T-\hat{A}^k\|,\\&\text{subject to}\quad P^{\prime}\in\{0,1\}^{n\times n^{\prime}},P^{\prime}1_{n^{\prime}}=1_n.\end{aligned} minimizePPTA^k,subject toP{0,1}n×n,P1n=1n.
其中, P i j ′ = 1 P_{ij}^{\prime}=1 Pij=1当且仅当节点i属于类j,P是P’的行正归一化版本
2.图增强

请添加图片描述

Multi-view StructComp. 在多视图对比学习中,我们需要比较图的两个扰动视图。这不仅要求我们压缩节点特性,还要求我们对这些压缩特性进行数据增强。然而传统的数据增强方法,如DropEdge,在StructComp中是不适用的。为了填补这一空白,我们引入了一种新的数据增强方法,称为“DropMember”。该技术为生成压缩节点的不同表示提供了一种新颖的方法,这对于StructComp下的多视图对比学习是必不可少的。
DropMember方法是基于预先确定的分配矩阵P实现的。对于压缩图中代表一个社区的每个节点,我们随机丢弃社区内的一部分节点,重新计算社区特征。对于增强的 𝑋𝑐′ 中的每个团簇j有:
x j ′ = 1 s ′ ∑ i = 1 s m i x i . x_j'=\frac{1}{s'}\sum_{i=1}^{s}m_ix_i. xj=s1i=1smixi.

通过对DropMember后获得的压缩特征和完整的压缩特征进行对比学习,可以训练一个健壮的编码器。社区内部分节点信息的丢失并不影响社区的嵌入质量

Z c = σ ( σ ( X c W 1 ) W 2 ) , Z c ′ = σ ( σ ( X c ′ W 1 ) W 2 ) . Z_c=\sigma(\sigma(X_cW_1)W_2),\quad Z_c^{\prime}=\sigma(\sigma(X_c^{\prime}W_1)W_2). Zc=σ(σ(XcW1)W2),Zc=σ(σ(XcW1)W2).

总结

创新性一般

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值