Block Modeling-Guided Graph Convolutional Neural Networks

发表于:AAAI22
推荐指数: #paper/⭐⭐⭐
概括其思想:
其思路基于每个子块应该有自己的建模方式,以块为基础重构了相似性矩阵

Block matrix

给定标签矩阵 Y ∈ R n × c Y\in\mathbb{R}^{n\times c} YRn×c.块矩阵定义为:
H = ( Y T A Y ) ⊘ ( Y T A E ) H=\left(Y^TAY\right)\oslash\left(Y^TAE\right) H=(YTAY)(YTAE)
其中,E是和Y相似的all one矩阵.块矩阵链接任何两个块的相似性.

模型框架

文章配图

学习块矩阵

有点看不懂,需要看代码
B ˉ = σ ( M L P ( X ) ) \bar{B}=\sigma\left(\mathrm{MLP}\left(X\right)\right) Bˉ=σ(MLP(X))
B = s o f t m a x ( B ˉ ) B=\mathrm{softmax}\left(\bar{B}\right) B=softmax(Bˉ)
L M L P = ∑ v i ∈ T ν f ( B i , Y i ) \mathcal{L}_{MLP}=\sum_{v_i\in\mathcal{T}_\nu}f\left(B_i,Y_i\right) LMLP=viTνf(Bi,Yi)
其中, T V \mathcal{T}_{\mathcal{V}} TV.这三个公式的意思是:用特征矩阵X去模拟标签矩阵Y.
Y s = { Y i , B j ∣ ∀ v i ∈ T V , ∀ v j ∉ T V } Y_s=\{Y_i,B_j|\forall v_i\in\mathcal{T}_\mathcal{V},\forall v_j\notin\mathcal{T}_\mathcal{V}\} Ys={Yi,Bj∣∀viTV,vj/TV}
H = ( Y s T A Y s ) ⊘ ( Y s T A E ) H=\begin{pmatrix}Y_s^TAY_s\end{pmatrix}\oslash\begin{pmatrix}Y_s^TAE\end{pmatrix} H=(YsTAYs)(YsTAE)

构建相似块矩阵:

得到新的块H后,我们进行如下操作:
Q = H H T Q=HH^T Q=HHT
D i a g ( Q ) ← α ⋅ D i a g ( Q ) \mathrm{Diag}\left(Q\right)\leftarrow\alpha\cdot\mathrm{Diag}\left(Q\right) Diag(Q)αDiag(Q)

基于块的图卷积

B i = { b i 1 , b i 2 , . . . , b i c } a n d B j = { b j 1 , b j 2 , . . . , b j c } B_i = \{b_i^1, b_i^2, ..., b_i^c\} \mathrm{and} B_j = \{b_j^1, b_j^2, ..., b_j^c\} Bi={bi1,bi2,...,bic}andBj={bj1,bj2,...,bjc}.因此,这里有 c 2 c^2 c2个类链接对于任何节点 ⟨ v i , v j ⟩ \langle v_{i},v_{j}\rangle vi,vj
相似性函数可以定义为:
p ( φ ( v i ) = Y r , φ ( v j ) = Y t ) = b i r b j t p\left(\varphi(v_i)=Y_r,\right.\varphi(v_j)=Y_t)=b_i^rb_j^t p(φ(vi)=Yr,φ(vj)=Yt)=birbjt
φ \varphi φ是映射函数,映射节点到它的类别. r , t ∈ { 1 , 2 , . . . , c } r,t\in\{1,2,...,c\} r,t{1,2,...,c}.
我们可以定义 v i 和 v j v_{i}和v_{j} vivj的权重矩阵为: ω i j = ∑ r = 1 c ∑ t = 1 c q r , t b i r b j t \omega_{ij}=\sum_{r=1}^c\sum_{t=1}^cq_{r,t}b_i^rb_j^t ωij=r=1ct=1cqr,tbirbjt
矩阵形式为:
Ω = B Q B T \Omega=BQB^T Ω=BQBT
我们利用权重矩阵重定义邻接矩阵 A ′ = Ω ⊙ ( A + β I ) A^{\prime}=\Omega\odot(A+\beta I) A=Ω(A+βI)
但是, A ′ A' A的每个元素可能不在(0,1)内.因此,我们利用相似性矩阵来重新归一化:
a ~ i , j = exp ⁡ ( a ′ i , j ) ∑ v s ∈ N exp ⁡ ( a ′ i , s ) \tilde{a}_{i,j}=\frac{\exp{(a^{\prime}{}_{i,j})}}{\sum_{v_s\in\mathcal{N}}\exp{(a^{\prime}{}_{i,s})}} a~i,j=vsNexp(ai,s)exp(ai,j)
最终,卷积函数被设计为:
Z ( k ) = Z ( k − 1 ) W 1 ( k ) + A ~ Z ( k − 1 ) W 2 ( k ) Z^{(k)}=Z^{(k-1)}W_1^{(k)}+\tilde{A}Z^{(k-1)}W_2^{(k)} Z(k)=Z(k1)W1(k)+A~Z(k1)W2(k)

模型优化:

L G C N = ∑ v i ∈ T V f ( Z i , Y i ) \mathcal{L}_{GCN}=\sum_{v_i\in\mathcal{T}_\mathcal{V}}f\left(Z_i,Y_i\right) LGCN=viTVf(Zi,Yi)
L f i n a l = λ L G C N + ( 1 − λ ) L M L P \mathcal{L}_{final}=\lambda\mathcal{L}_{GCN}+(1-\lambda)\mathcal{L}_{MLP} Lfinal=λLGCN+(1λ)LMLP

  • 27
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值