发表于:AAAI22
推荐指数: #paper/⭐⭐⭐
概括其思想:
其思路基于每个子块应该有自己的建模方式,以块为基础重构了相似性矩阵
Block matrix
给定标签矩阵 Y ∈ R n × c Y\in\mathbb{R}^{n\times c} Y∈Rn×c.块矩阵定义为:
H = ( Y T A Y ) ⊘ ( Y T A E ) H=\left(Y^TAY\right)\oslash\left(Y^TAE\right) H=(YTAY)⊘(YTAE)
其中,E是和Y相似的all one矩阵.块矩阵链接任何两个块的相似性.
模型框架
学习块矩阵
有点看不懂,需要看代码
B ˉ = σ ( M L P ( X ) ) \bar{B}=\sigma\left(\mathrm{MLP}\left(X\right)\right) Bˉ=σ(MLP(X))
B = s o f t m a x ( B ˉ ) B=\mathrm{softmax}\left(\bar{B}\right) B=softmax(Bˉ)
L M L P = ∑ v i ∈ T ν f ( B i , Y i ) \mathcal{L}_{MLP}=\sum_{v_i\in\mathcal{T}_\nu}f\left(B_i,Y_i\right) LMLP=vi∈Tν∑f(Bi,Yi)
其中, T V \mathcal{T}_{\mathcal{V}} TV.这三个公式的意思是:用特征矩阵X去模拟标签矩阵Y.
Y s = { Y i , B j ∣ ∀ v i ∈ T V , ∀ v j ∉ T V } Y_s=\{Y_i,B_j|\forall v_i\in\mathcal{T}_\mathcal{V},\forall v_j\notin\mathcal{T}_\mathcal{V}\} Ys=