已知空间两点组成的直线求线上某点的Z值

已知空间两点组成的直线求线上某点的Z值,为什么会有这种看起来比较奇怪的求值需求呢?因为真正三维空间的几何计算是比较麻烦的,很多时候需要投影到二维,再反推到三维空间上去。

复习下空间直线方程:已知空间上一点 M 0 ( x 0 , y 0 , z 0 ) M0(x0,y0,z0) M0(x0,y0,z0)和方向向量 S ( m , n , p ) S(m,n,p) S(m,n,p),则直线方程的点向式为:
X − x 0 m = Y − y 0 n = Z − z 0 p \frac{X-x0}{m}=\frac{Y-y0}{n}=\frac{Z-z0}{p} mXx0=nYy0=pZz0

根据该公式可以解决该计算几何问题,具体实现代码如下:

#include<iostream>

using namespace std;

//三维double矢量
struct Vec3d
{
	double x, y, z;

	Vec3d()
	{
		x = 0.0;
		y = 0.0;
		z = 0.0;
	}
	Vec3d(double dx, double dy, double dz)
	{
		x = dx;
		y = dy;
		z = dz;
	}
	void Set(double dx, double dy, double dz)
	{
		x = dx;
		y = dy;
		z = dz;
	}
};

bool CalLinePointZ(const Vec3d & v1, const Vec3d & v2, Vec3d & vp)
{
	const double eps = 0.0000001;

	//方向向量
	Vec3d s(v2.x-v1.x, v2.y - v1.y, v2.z - v1.z);

	//此时无法求值
	if (abs(s.x) == eps && abs(s.y) == eps)
	{
		return false;
	}

	double t = 0;
	if (abs(s.x) > eps && abs(s.y) == eps)
	{
		double t = (vp.x - v1.x) / s.x;
	}
	else if (abs(s.x) == eps && abs(s.y) > eps)
	{
		double t = (vp.y - v1.y) / s.y;
	}
	else
	{
		double tx = (vp.x - v1.x) / s.x;
		double ty = (vp.y - v1.y) / s.y;

		//说明点不可能在直线上
		if (abs(tx - ty) > eps)
		{
			return false;
		}
		t = tx;
	}

	vp.z = t * s.z + v1.z;
	return true;
}

int main()
{
	Vec3d v1(0.0, 0.0, 3.7);
	Vec3d v2(5.0, 5.0, 4.5);

	Vec3d vp;
	vp.x = 4.6;
	vp.y = 4.6;
	vp.z = 0.0;

	if (CalLinePointZ(v1, v2, vp))
	{
		cout << "该点的高程:" << vp.z << endl;
	}

	return 0;
}

注意根据方向向量的值做特殊情况判断,当直线的方向向量 S ( m , n , p ) S(m,n,p) S(m,n,p) m = n = 0 m=n=0 m=n=0时,是无法正确求值的。

### 实现基于两条直线的视角修正 为了在MATLAB中通过两条直线进行图像或视频的视角校正,可以采用霍夫变换检测图像中的直线,并利用这些直线来估计透视变换矩阵。具体方法涉及以下几个方: #### 霍夫变换用于直线检测 霍夫变换是一种常用的技术,能够有效地从二化边缘图像中识别出直线。对于给定的一幅图像,先对其进行灰度转换和Canny边缘检测,再应用霍夫变换找到可能存在的直线。 ```matlab % 将彩色图像转为灰度图 grayImage = rgb2gray(image); % 使用 Canny 方法获取边缘图像 edgeImage = edge(grayImage, 'Canny'); % 应用 Hough 变换寻找直线 [H, theta, rho] = hough(edgeImage); peaks = houghpeaks(H, 2); % 寻找最显著的两组 (theta,rho) lines = houghlines(edgeImage, theta, rho, peaks); ``` 此过程会得到两条具有代表性的直线及其对应的参数$(\theta_1,\rho_1)$ 和 $(\theta_2,\rho_2)$[^1]。 #### 计算单应性矩阵(Homography Matrix) 一旦获得了两条目标直线的信息之后,就可以构建源坐标系下的四个角以及目的坐标系下理想位置上的对应四集。接着计算这两个平间的单应性关系H,即所谓的“单应性矩阵”。 假设已知原图中有两条平行于X轴的理想状态下的参考线L1'和L2',而当前观测到了歪斜后的实际线条$L_{actual\_line1}$ 和 $L_{actual\_line2}$.那么可以根据这两条线上任意两点的位置解出它们各自的端坐标P1,P2,Q1,Q2. 然后定义新的映射关系: $$ \begin{bmatrix} u \\ v\\ w \end{bmatrix}_{dst}=H*\begin{bmatrix} x \\ y\\ z \end{bmatrix}_{src}, $$ 其中$H=\left[\begin{array}{ccc} h_{00}&h_{01}&h_{02}\\ h_{10}&h_{11}&h_{12}\\ h_{20}&h_{21}&h_{22}\end{array}\right]$ 是待取的单应性矩阵. 可以通过最小二乘法或者其他优化手段解决这个问题从而获得最佳拟合效果的最佳单应性矩阵H。 #### 执行几何变换 最后一步就是使用`imwarp()`函数执行仿射变换操作完成最终的画矫正工作。 ```matlab outputSize = size(originalImage); correctedImage = imwarp(originalImage,H,'OutputView',imref2d(outputSize)); imshow(correctedImage); ``` 以上就是在MATLAB环境下实现基于两条直线来进行简单视差纠正的方法概述。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

charlee44

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值