✅博主简介:本人擅长数据处理、建模仿真、程序设计、论文写作与指导,项目与课题经验交流。项目合作可私信或扫描文章底部二维码。
城市轨道交通系统中,公交站址的合理布局对于提升整个交通系统的运行效率至关重要。为了优化城市轨道交通车站周边的常规公交站址,我们构建了一个优化模型,该模型以乘客出行时间最小化为优化目标,同时考虑到常规公交站间距和设站原理等约束条件。
模型的主要目标是减少乘客的换乘步行距离,这是影响乘客出行体验的重要因素。具体而言,我们的优化模型包括以下几个步骤:
-
定义优化目标:我们的首要目标是最小化乘客的出行时间。出行时间包括步行时间、候车时间和乘车时间。因此,我们需要通过优化公交站址的布局,尽可能减少乘客的步行距离,从而降低整体的出行时间。
-
设定约束条件:常规公交站址的优化需要遵循一定的约束条件,包括公交站间距的限制和设站原则。公交站间距是指相邻两个公交站点之间的最大距离,这一约束是为了确保公交网络的覆盖范围,避免站点过于稀疏或密集。
-
建立优化模型:模型中的决策变量主要是各公交站点的具体位置,目标是通过调整站点的位置来最小化乘客的步行距离。优化问题可以表示为一个线性规划问题或整数规划问题,具体取决于站点的布置方式。
-
求解与分析:利用现代优化算法(如遗传算法或粒子群算法)求解该模型,并对优化结果进行分析,比较不同公交站点布局对乘客出行时间的影响。
通过应用这一模型,我们能够为城市轨道交通车站周边设计出最优的公交站点布局,提高乘客的出行效率。
二、常规公交与轨道交通运行协同优化模型
常规公交与城市轨道交通的协同运行是实现城市交通系统高效运行的关键。为此,我们建立了一个协同优化模型,该模型旨在综合考虑乘客候车时间、在车时间、换乘时间以及所需车辆数量等因素,最小化乘客的总出行时间和运行成本。
模型的主要内容包括:
-
定义优化目标:我们设置了两个主要优化目标:一是最小化乘客的总出行时间,包括候车时间、在车时间和换乘时间;二是最小化运营成本,包括轨道交通和公交系统的运营成本。总出行时间的减少可以提高乘客的满意度,而降低运营成本有助于提高系统的经济效益。
-
设定约束条件:优化模型中的约束条件主要包括轨道交通与常规公交的发车间隔和初始发车时刻。这些约束条件确保了系统的运行稳定性和高效性。例如,发车间隔的设置需要满足乘客的等待时间需求,同时避免过度或不足的发车频率。
-
建立优化模型:决策变量包括轨道交通和常规公交的初始发车时刻、发车间隔等。模型可以采用混合整数线性规划(MILP)来描述系统的运行逻辑和约束条件,进而实现最优解的求解。
-
优化算法设计:为了求解复杂的优化模型,我们设计了基于遗传算法的求解方法。遗传算法能够有效地处理复杂的优化问题,尤其是在变量和约束条件较多的情况下。该算法通过模拟自然选择过程来逐步逼近最优解。
通过这一模型的应用,可以优化轨道交通和公交系统的发车时刻和发车间隔,提高乘客的换乘效率,减少总出行时间和运行成本。
三、大数据分析在优化过程中的应用
大数据技术在城市轨道交通与常规公交的协同优化过程中发挥了重要作用。通过对海量交通数据的分析,我们能够更精确地了解乘客的出行需求和行为模式,从而进行更有效的优化。
-
学习内容与难度的智能调整:利用大数据技术对乘客出行数据进行分析,可以智能地调整公交和轨道交通的运行内容和难度。这包括调整公交线路的覆盖范围、优化轨道交通的运行线路等,以更好地满足乘客的需求。
-
学生学习行为的预测与干预:通过对乘客行为数据的分析,我们可以预测乘客的出行模式和行为变化。这种预测能够帮助交通管理部门提前采取措施,例如调整发车间隔、增设临时站点等,以应对潜在的交通高峰期。
-
学习群体的分类与群体行为分析:大数据分析还能够对乘客进行群体分类,识别出不同类型的乘客群体,并分析其行为模式。这可以帮助交通管理部门制定更具针对性的优化方案,如为不同群体提供定制化的交通服务。
-
激励机制与学习动机的提升:通过数据分析,可以制定有效的激励机制,以鼓励乘客选择更为高效的出行方式。例如,推出乘客积分奖励制度,鼓励乘客在非高峰时段出行,减少交通拥堵。
四、优化案例分析:青岛市地铁6号线与周边公交系统
我们以青岛市地铁6号线及其周边4条常规公交线路为案例,进行了详细的优化分析。通过对三个换乘节点区域的公交站址优化及4条常规公交与地铁6号线一期的运行协同优化,取得了一系列显著的优化效果。
-
公交站址优化:在黄河路地铁站周边,通过优化公交站址配置,乘客的换乘时间减少了56.5分钟。在齐长城路地铁站周边,两条公交线路的站址优化后,乘客换乘时间分别减少了37.84分钟和31.84分钟。在钱塘江路地铁站周边,优化后的公交站址使得乘客换乘时间减少了46.12分钟。
-
运行协同优化:在运行协同优化计算中,通过调整公交和地铁的发车时刻和发车间隔,乘客的候车时间降低了40.06分钟,换乘时间降低了35.5分钟。最终,乘客的总出行时间减少了10.9分钟。尽管地铁和公交车辆数量有所增加,但目标函数值降低了30.8,表明优化模型有效地提升了系统的运行效率。
-
import numpy as np from scipy.optimize import minimize # 定义目标函数:乘客出行时间的总和 def objective_function(x, *args): # x 包含公交站点的位置 # args 包含其他必要的数据 # 这里使用简单的目标函数示例 total_travel_time = np.sum(x**2) # 目标函数 return total_travel_time def constraint1(x): return x[0] + x[1] - 10 # 约束 x0 = np.array([1, 1]) # 设置约束 constraints = [{'type': 'eq', 'fun': constraint1}] # 执行优化 result = minimize(objective_function, x0, args=(1, 2), constraints=constraints, method='SLSQP') print('优化结果:', result.x) print('最小目标函数值:', result.fun)