✅博主简介:本人擅长建模仿真、程序设计、论文写作与指导,项目与课题经验交流。项目合作可私信或扫描文章底部二维码。
设计了一套基于STM32的步态识别系统,旨在解决现有步态识别系统中传感器种类少、数据不完整、装备不便携、性价比低以及数据传输不稳定等问题。该系统通过多种传感器采集人体步态信息,并利用Wi-Fi传输将数据传送至上位机端进行处理与分析,实现对人体步态的准确识别。系统设计包括硬件选择、数据采集与处理、软件编程与上位机开发等方面,具体内容如下:
1. 硬件设计
1.1 传感器选择与数据采集
为了获取全面的步态信息,本设计选用薄膜压力传感器、六轴传感器和肌电传感器。
-
薄膜压力传感器:用于测量足底的压力分布,能够提供步态分析中的足部接触压力数据。通过将多个压力传感器布置在鞋垫中,能够实时监测不同部位的压力变化,从而分析步态的重心移动和压力分布情况。
-
六轴传感器:包括三轴加速度计和三轴陀螺仪,主要用于采集膝关节的加速度和角速度信号。这些数据有助于分析步态中的运动幅度和速度变化,尤其是在膝关节的动作特征提取上至关重要。
-
肌电传感器:用于测量小腿部位的肌肉电信号,能够反映肌肉的活动状态和疲劳程度。这些信号对于分析步态中的肌肉功能状态和运动特征提供了额外的数据支持。
1.2 主控芯片与通信模块
-
STM32F103ZET6:选用STM32F103ZET6单片机作为主控芯片,具有高性能、低功耗和丰富的外设接口。该芯片负责处理传感器数据、控制数据采集流程及进行数据传输等功能。其强大的处理能力确保了对实时数据的快速处理和响应。
-
ESP8266模块:采用ESP8266 Wi-Fi模块实现数据的无线传输。ESP8266模块具有较高的稳定性和传输速度,能够将步态数据稳定地传输至上位机。通过Wi-Fi进行数据传输,既解决了传输距离的问题,又避免了传统有线连接的限制,提升了系统的便携性。
2. 数据采集与处理
2.1 软件编程与整合
-
Keil编程:在Keil开发环境中,对STM32F103ZET6进行编程,包括对传感器数据采集模块的编写、数据处理算法的实现以及Wi-Fi模块的数据传输控制。具体任务包括读取传感器数据、进行数据滤波、特征提取、数据打包和发送等。
-
传感器数据处理:对传感器数据进行预处理,如去噪、滤波等,以提高数据的准确性和稳定性。数据的特征提取包括计算足底压力的重心变化、膝关节的运动轨迹、肌电信号的波动情况等。
-
数据传输控制:实现Wi-Fi模块的数据发送功能,确保数据能够稳定、可靠地传输到上位机。编写Wi-Fi连接管理和数据打包的代码,处理网络通信的异常情况。
2.2 上位机开发与数据展示
-
LabVIEW软件开发:使用LabVIEW开发了一个多功能的上位机系统,用于接收、显示和处理传感器数据。上位机功能包括实时数据显示、波形图展示、数据保存和回放等。通过图形化界面,用户可以直观地观察步态数据的变化趋势,并进行后续的数据分析。
-
实时显示与分析:上位机实时显示来自各传感器的数据,并以波形图的形式呈现,用户可以实时监控步态信息的变化。数据保存功能允许用户将数据存储在本地或云端,便于后续的分析和处理。
-
数据回放:支持数据的回放功能,用户可以查看历史数据,并对数据进行进一步的分析。这一功能对步态数据的长期跟踪和分析具有重要意义。
3. 步态数据分析与识别
3.1 离散数据分类
-
支持向量机(SVM):对分段采集的离散步态数据进行分类。SVM是一种强大的分类算法,通过将数据映射到高维空间,并寻找最佳分类超平面,实现对不同步态状态的准确分类。通过对训练数据的标注和模型训练,得到高准确率的分类结果。
-
分类准确率:通过实验验证,离散数据的分类准确率达到99.98%。这一结果表明,SVM算法能够有效地处理步态数据中的复杂特征,提供高精度的分类结果。
3.2 连续数据识别
-
长短期记忆网络(LSTM):对连续采集的时间序列步态数据进行识别。LSTM网络能够处理长序列数据中的时间依赖关系,适合于步态数据这种具有时间序列特性的输入。通过训练LSTM模型,能够准确识别步态中的不同状态和动作。
-
门控循环单元(GRU):作为LSTM的变种,GRU网络在处理时间序列数据时表现也很优秀。GRU网络通过简化门控机制,提高了计算效率。对步态数据的识别效果与LSTM相似,也能够提供高准确率的识别结果。
-
识别准确率对比:在实验中,LSTM和GRU对步态数据的识别准确率都很高,显示了两种网络结构在步态识别中的有效性。LSTM通常在长时间依赖的序列数据上表现更佳,而GRU在计算效率上具有优势。
4. 性能测试与优化
4.1 系统性能测试
-
数据采集稳定性:在实际测试中,系统能够稳定地采集传感器数据,传输过程中没有出现明显的丢包现象。数据的采集频率和传输速度都满足步态识别的实时性要求。
-
传输稳定性:Wi-Fi模块在不同环境下的传输稳定性经过验证,数据传输过程中未出现严重的丢失或延迟现象。系统能够稳定地将数据传输至上位机,并进行实时处理和展示。
-
步态识别精度:通过对不同状态下的步态数据进行测试,系统的识别精度达到了设计要求。离散数据的分类准确率和连续数据的识别准确率都符合预期,验证了设计方案的有效性。