✅博主简介:本人擅长数据处理、建模仿真、程序设计、论文写作与指导,项目与课题经验交流。项目合作可私信或扫描文章底部二维码。
1. 回收再制造供应链定价决策模型概述
在当今互联网与再制造产业深度结合的环境下,消费者的线上销售模式偏好和废旧产品的质量成为了影响回收定价决策的重要因素。针对这一问题,我们构建了制造商、电商零售平台及第三方回收商三种回收渠道的定价决策博弈模型,探讨了在消费者对废旧产品回收宣传活动反应下的供应链动态。
通过模型的建立与分析,确定了各个参与者的最优定价策略、物流服务水平、废旧产品回收宣传力度指数及回收率。研究结果表明,消费者的偏好不仅能显著提升供应链的物流服务水平,还对定价、市场需求量和整体利润产生积极影响。因此,加强消费者对废旧产品回收再制造的认知,提升回收产品的质量,不仅能够降低消费者的购买价格,扩大需求,还能增加供应链成员的利润。
2. 多层级竞争性回收再制造供应链模型
在包含多个制造商和第三方回收商的环境中,我们建立了一个多层级竞争性回收再制造供应链博弈模型,主要关注回收产品的质量和政府补贴行为。该模型探讨了制造商与第三方回收商之间的合作博弈,以及以制造商为主导的Stackelberg博弈结构。
研究发现,回收产品的质量对正向供应链的定价决策没有直接影响,但却与逆向供应链的回收价格、回购价格及整体利润存在正相关关系。政府补贴的引入明显改善了供应链的效益,同时制造商和回收产品的竞争强度对定价决策和绩效水平也起到了关键作用。此外,采用回收费用分担协调契约能够实现供应链的最优配置,协调后供应链各成员的利润显著提高,整体利润水平也超过了单一制造商主导模型的利润。
3. 政府机制对供应链的影响
在政府机制的影响下,我们进一步考虑了消费者和零售商偏好,以及供应链的协调作用,构建了一个包括制造商、零售商及第三方回收商的回收再制造供应链模型。通过对集中化、制造商主导和政府主导情况下的定价决策、再制造努力程度、宣传服务努力程度和供应链绩效进行分析,我们揭示了多个关键发现。
在制造商主导的情况下,消费者和零售商的偏好对产品价格、制造商的再制造努力和零售商的宣传服务努力产生了显著影响。同时,政府的补贴和奖惩机制能够有效激励制造商和零售商积极参与回收再制造活动。通过成本分摊契约,制造商可以鼓励第三方回收商开展回收活动,进而增强市场消费。在某些条件下,这些契约能够有效提高供应链的整体效益和社会福利。
4. Stackelberg博弈模型下的回收再制造供应链
在复杂情境下,我们考虑消费者对新产品与再制造产品的不同购买意愿,以及回收产品质量的差异,构建了由制造商主导、零售商负责回收的Stackelberg博弈模型。研究还探讨了在政府参与下,消费者获得补贴以及零售商面临回收奖惩激励的定价决策模型。
结果显示,当消费者对再制造产品的购买和支付意愿接近新产品时,供应链的总利润显著增加。回收产品的质量不仅影响新产品的定价决策,也对再制造产品的定价产生直接影响,进而影响市场需求量。同时,政府的参与能够有效激励制造商、零售商及消费者积极参与废旧产品的回收再制造活动,而供应链的协调契约则进一步提升了消费市场的作用,有助于促进政府政策的实施。
import numpy as np
import matplotlib.pyplot as plt
class SupplyChainModel:
def __init__(self, consumers, manufacturers, recyclers):
self.consumers = consumers
self.manufacturers = manufacturers
self.recyclers = recyclers
self.prices = []
self.recovery_rates = []
def optimize_pricing(self):
for m in self.manufacturers:
optimal_price = m.calculate_optimal_price(self.consumers)
self.prices.append(optimal_price)
def calculate_recovery_rate(self):
for r in self.recyclers:
recovery_rate = r.calculate_recovery_rate(self.consumers)
self.recovery_rates.append(recovery_rate)
def simulate(self):
self.optimize_pricing()
self.calculate_recovery_rate()
self.plot_results()
def plot_results(self):
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.plot(self.prices, label='Optimal Prices')
plt.title('Optimal Pricing')
plt.xlabel('Manufacturers')
plt.ylabel('Price')
plt.legend()
plt.subplot(1, 2, 2)
plt.plot(self.recovery_rates, label='Recovery Rates', color='orange')
plt.title('Recovery Rates')
plt.xlabel('Recyclers')
plt.ylabel('Rate')
plt.legend()
plt.show()
# Instantiate the model with dummy data
consumers = ['Consumer A', 'Consumer B']
manufacturers = ['Manufacturer A', 'Manufacturer B']
recyclers = ['Recycler A', 'Recycler B']
model = SupplyChainModel(consumers, manufacturers, recyclers)
model.simulate()