✅博主简介:本人擅长建模仿真、数据分析、论文写作与指导,项目与课题经验交流。项目合作可私信或扫描文章底部二维码。
人工智能在各领域的广泛应用推动了数据标注行业的快速发展,数据标注众包服务应运而生。然而,随着各行业对数据标注需求的不断增加,众包平台面临如何高效且高质量提供数据标注服务的挑战。在众包平台中,标注人员难以迅速选出适合自己的任务,往往优先考虑简单或佣金高的任务,而非花费时间筛选符合兴趣和特长的任务,这严重影响了标注数据的效率和质量。其主要原因是当前数据众包平台缺乏有效的推送机制。
二、解决方案与创新点
-
基于知识图谱的领域数据挖掘方法
- 提出基于知识图谱的领域数据挖掘方法,用于对结构化用户信息和题目信息进行高维特征提取。
- 改进 PCNN(Piece-Wise CNN)模型,并结合 TransE 技术,生成可直接被模型调用的用户表征向量和题目表征向量。这种方法能够更准确地捕捉用户和题目的特征,为后续的个性化推荐提供基础。
-
新颖的多头注意力机制融合的深层卷积神经网络(MADeepCNN)
- 提出新颖的多头注意力机制融合的深层卷积神经网络 MADeepCNN。
- 该网络依据题目难易程度、题目类型和专业领域与用户标注偏好进行多视角的相关性匹配计算。通过考虑多个因素,能够更全面地评估用户与题目的匹配度,提高推荐的准确性。
-
基于用户画像的个性化推荐融合算法
- 考虑用户历史答题行为和用户当前偏好,提出基于用户画像的个性化推荐融合算法。
- 实现对标注任务的个性化推荐。该算法能够根据用户的个性化需求进行任务推荐,提高用户的参与度和标注效率。
三、实验验证与效果
- 在公开数据集上进行实验验证,结果表明用户可以以更高的准确率完成对推荐题目的作答。
- 通过消融实验验证各个设计模块的有效性:
- 基于知识图谱的表征向量检索相比传统文本匹配方法,准确率显著提升,证明了知识图谱在特征提取方面的优势。
- 基于 MA-DeepCNN 的相关性匹配算法进一步提升了题目推荐的准确率和召回率,体现了多头注意力机制融合的深层卷积神经网络在多视角匹配计算中的作用。
- 在自适应融合算法中,当融合系数为 0.5 时,算法推荐的准确性和多样性大幅提升,证明算法既能精准反映用户偏好和兴趣,又能向用户推荐冷门疑难题目和新兴问题类型。
四、系统设计与实现
- 基于上述核心推荐算法设计并开发一套新型众包数据个性化题目推荐系统。
- 系统的算法内核采用深度学习技术作为支撑,以 Flask、HTML、CSS 和 JavaScript 作为前端和后台的开发工具,并使用 MySQL 作为数据库服务器来进行系统的搭建与功能实现。
- 系统最终实现了对标注题目的分布式存储与管理、题目个性化推荐、标注准确率验收、数据稳定性监控等功能。
- 通过专业测试人员实际操作评测,证明该系统能够满足众包数据标注系统的应用需求,为其他人员开展相关应用探索提供平台支撑。
import numpy as np
import pandas as pd
from sklearn.preprocessing import LabelEncoder
# 模拟用户数据
users = pd.DataFrame({
'user_id': [1, 2, 3],
'interests': ['technology', 'art', 'sports']
})
# 模拟题目数据
tasks = pd.DataFrame({
'task_id': [101, 102, 103],
'task_type': ['technology', 'art', 'sports'],
'difficulty': [3, 2, 4]
})
# 对用户兴趣和题目类型进行编码
label_encoder = LabelEncoder()
users['encoded_interests'] = label_encoder.fit_transform(users['interests'])
tasks['encoded_task_type'] = label_encoder.fit_transform(tasks['task_type'])
# 简单的推荐算法(根据兴趣匹配)
def recommend_tasks(user_id):
user_interests = users.loc[users['user_id'] == user_id, 'encoded_interests'].iloc[0]
recommended_tasks = tasks[tasks['encoded_task_type'] == user_interests]
return recommended_tasks
# 测试推荐算法
user_id = 1
recommended_tasks = recommend_tasks(user_id)
print(recommended_tasks)