✅博主简介:本人擅长数据处理、建模仿真、论文写作与指导,科研项目与课题交流。项目合作可私信或扫描文章底部二维码。
电信行业在近年来的迅速发展过程中,客户流失现象日益严重,主要原因在于市场逐渐趋于饱和,而竞争愈加激烈。为了提高市场竞争力,电信运营商纷纷推出优惠策略,用户基于自身需求和对价格的敏感度,容易在多个运营商之间频繁切换。因此,如何通过数据分析和模型预测提前识别潜在流失客户,并采取相应措施进行客户维护,成为电信企业关注的焦点。然而,由于电信客户流失数据集通常具有类别不平衡的特征(即流失客户数量较少,而正常客户数量较多),直接采用传统的分类模型进行训练,往往会导致模型偏向于预测多数类,即“正常客户”,从而降低了对流失客户的预测精度。针对这一问题,本研究提出了基于MSL-SMOTE(Multi-Stage Level Synthetic Minority Over-sampling Technique)算法的类不平衡数据处理方法。
MSL-SMOTE算法通过结合MWMOTE(Majority Weighted Minority Over-sampling Technique)和Safe-Level-SMOTE两种改进版的SMOTE方法,重点解决了传统SMOTE算法在处理少数类样本时存在的样本分布不均、模糊类边界和生成样本质量不佳的问题。首先,MSL-SMOTE算法利用MWMOTE算法对少数类样本进行加权处理,提升了对边界样本的关注度,从而更好地生成高质量的少数类样本;接着,再使用Safe-Level-SMOTE算法在保证少数类样本邻域安全性的前提下合成新的少数类样本,避免生成“噪声样本”。在MSL-SMOTE的平衡化处理下,电信客户流失数据集中的多数类与少数类样本比例得到了有效改善,最终生成了一个更加均衡的数据集。通过平衡化处理的数据集进行模型训练,显著提升了模型对流失客户的识别能力,验证了MSL-SMOTE在解决类别不平衡问题上的有效性。
(2) 遗传算法用于模型参数优化
在电信客户流失预测模型的构建中,模型参数的选择对预测性能的影响至关重要。然而,传统的模型调参方法往往依靠网格搜索或随机搜索,这些方法在面对复杂模型时,调参效率低下,并且容易陷入局部最优,无法全面探索参数空间,从而导致模型无法达到最优性能。针对这一问题,本研究引入了遗传算法(Genetic Algorithm)进行模型参数的优化。
遗传算法是一种基于自然选择和遗传变异的全局搜索策略,它通过模拟生物界的进化过程来自动调整模型参数组合。首先,定义模型的参数集合为遗传算法的染色体,并设定目标函数(如预测模型的准确率)作为遗传算法的适应度函数。然后,通过选择、交叉和变异等操作生成新的参数组合。遗传算法能够在大范围的参数空间内进行高效搜索,从而找到性能最优的参数组合。通过将遗传算法应用于随机森林、XGBoost和LightGBM等模型的参数优化,结果表明,遗传算法调参后的模型在精确度、召回率和F1值上均优于默认参数模型。这不仅证明了遗传算法在模型参数优化上的优越性,还有效解决了传统调参方法效率低的问题。
在实验过程中,分别使用了默认参数和遗传算法调参后的模型进行对比。实验结果显示,经过遗传算法调参后,模型的预测性能提升了约5%-10%,尤其在对流失客户的识别上,模型的召回率提高明显。这一提升意味着遗传算法不仅能够帮助模型找到更加精准的参数组合,同时在电信客户流失预测任务中也表现出较好的泛化能力。
(3) 基于CW-Stacking的电信客户流失集成预测模型
尽管单一预测模型在某些特定场景下能够取得较好的效果,但在复杂的客户流失场景中,单一模型的预测精度往往难以满足实际需求。因此,为了提升电信客户流失预测的准确性和稳健性,本研究提出了基于CW-Stacking(Class-Weighted Stacking)集成算法的电信客户流失预测模型。CW-Stacking是一种改进的Stacking集成策略,它通过考虑基学习器之间的差异性,并结合权值分析来提高整体模型的性能。
在CW-Stacking集成模型中,首先选择随机森林(Random Forest)、XGBoost和LightGBM作为第一层基学习器。三种模型各自具有不同的特征处理能力:随机森林能够处理高维数据,并且对数据的噪声具有较好的抗干扰能力;XGBoost擅长处理稀疏数据和复杂关系;而LightGBM在面对大规模数据集时表现出色,训练速度快且资源消耗低。这三种基学习器的互补性为CW-Stacking模型提供了多样化的特征表示,提升了模型对复杂模式的识别能力。
为了进一步提高元学习器(Meta-Learner)的性能,本研究采用了基于层次分析法(AHP)的加权策略为各基学习器分配权重。层次分析法通过建立指标矩阵,综合考虑基学习器的预测精度、召回率和F1值等多个指标,为每个基学习器分配合适的权值。经过权值调整后,元学习器能够在接收各基学习器输出时,利用更为精确的权重组合进行最终决策,从而避免了传统Stacking算法中基学习器权重分配不合理的问题。
经过实验验证,基于CW-Stacking的集成模型在电信客户流失数据集上的表现明显优于单一模型和其他常见集成策略(如Bagging、Boosting和传统Stacking)。CW-Stacking模型在流失客户识别的准确率和召回率上均达到最高值,有效解决了单一模型在处理复杂数据时容易出现的过拟合或欠拟合问题。实验结果表明,CW-Stacking模型在大多数情况下具有更好的预测稳定性和抗干扰能力,为电信客户流失预测提供了更加稳健的解决方案。
(4) 电信客户流失预测平台的设计与实现
为了将研究成果应用于实际业务场景,本研究基于上述模型设计并实现了一个电信客户流失预测平台。平台采用Hadoop集群进行大规模客户数据的存储和处理,并结合MySQL数据库进行数据管理。平台的主要功能模块包括客户信息管理、流失客户预测、数据可视化展示和流失客户维护策略推荐。通过引入SpringBoot和Vue框架进行前后端分离开发,使平台具备了较好的交互性能和扩展性。流失客户预测模块基于CW-Stacking模型实现实时预测,并将预测结果推送到数据可视化模块中进行展示。数据可视化模块采用ECharts框架,将客户流失趋势、流失原因分析和客户特征分布以多维度图表形式展示,方便运营商对客户流失状况进行直观分析。
clc; clear; close all;
% 加载电信客户数据集
data = readtable('telecom_churn_data.csv');
% 数据预处理
data = fillmissing(data, 'constant', 0);
X = data{:, 1:end-1};
Y = data{:, end};
% 数据集分割
cv = cvpartition(Y, 'Holdout', 0.3);
XTrain = X(training(cv), :);
YTrain = Y(training(cv), :);
XTest = X(test(cv), :);
YTest = Y(test(cv), :);
% 基于MSL-SMOTE处理数据不平衡问题
balancedData = msl_smote(XTrain, YTrain);
XTrain = balancedData{:, 1:end-1};
YTrain = balancedData{:, end};
% 构建随机森林、XGBoost和LightGBM模型
modelRF = TreeBagger(50, XTrain, YTrain, 'Method', 'classification');
modelXGBoost = fitcensemble(XTrain, YTrain, 'Method', 'LogitBoost');
modelLightGBM = fitctree(XTrain, YTrain);
% 基于CW-Stacking集成模型
stackedModel = fitcensemble(XTrain, YTrain, 'Learners', {modelRF, modelXGBoost, modelLightGBM}, 'Method', 'Bag');
% 预测与评价
YPred = predict(stackedModel, XTest);
confusionchart(YTest, YPred);