推荐算法多任务学习研究毕业论文【附代码+数据】

✅博主简介:本人擅长数据处理、建模仿真、论文写作与指导,科研项目与课题交流。项目合作可私信或扫描文章底部二维码。


(1)多任务学习推荐算法的背景与问题

  • 数字化技术与众多产业融合,推动产业高质量发展,但也带来数据量爆炸式增长和信息过载问题,推荐算法应运而生。随着社会发展,推荐场景变化,基于多任务学习的推荐算法成为未来发展方向。
  • 现存多任务学习推荐算法存在跷跷板问题,即一个任务表现提高可能损害其他任务表现,导致多个任务性能不能同时提升;同时,现有算法不能有效利用多个任务之间的顺序依赖性,实际应用中用户多个步骤存在顺序依赖性,前一任务可为后一任务提供有用信息,但现有算法未能有效利用。

(2)解决跷跷板问题的方法

  • 为解决跷跷板问题,提出渐进分层的混合专家推荐算法 MLMMOE。该算法在多门混合专家推荐算法模型基础上,使用渐进分层提取网络提取高层次共享信息。每一层提取网络由门控网络和专家网络构成,门控网络包括针对特定任务专家的门控网络和针对共享专家的门控网络。
  • MLMMOE 中不同任务的参数在早期网络层未完全分离,而是在上层网络逐步分离。上层提取网络中的专家网络以低级提取网络中门控网络的融合结果作为输入信息,为上层专家提取知识提供更好信息。
  • 在两个公开数据集上与现存多任务学习推荐算法进行对比实验,证明所提算法可有效解决跷跷板问题。

(3)利用任务顺序依赖性提高推荐准确度的方法

  • 为进一步利用多个任务之间的顺序依赖性提高算法模型推荐准确度,在 MLMMOE 基础上新增自适应信息迁移模块,提出自适应信息迁移的混合专家推荐算法 MLMMOE - AIT。
  • 该算法在考虑多个任务顺序依赖性的同时,新增的自适应信息迁移模块可在靠近输出层的向量空间中自适应地学习用户在不同任务之间传输的信息及数量,更好地利用任务顺序依赖性。
ratings = [5 3 4; 2 4 5; 3 2 1]; % 3 个用户对 3 个物品的评分

% 计算用户之间的相似度
userSimilarity = corrcoef(ratings);

% 预测用户对未评分物品的评分
targetUser = 1; % 目标用户
unratedItem = 3; % 未评分物品

similarUsers = find(userSimilarity(targetUser,:)>0.5); % 找到与目标用户相似的用户

predictedRating = mean(ratings(similarUsers,unratedItem)); % 预测评分

disp(['预测的评分:', num2str(predictedRating)]);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值