✅博主简介:本人擅长数据处理、建模仿真、论文写作与指导,科研项目与课题交流。项目合作可私信或扫描文章底部二维码。
(1)未知环境下路径规划问题及挑战
- 在人机共生的研究领域中,环境未知情况下的路径规划至关重要,涉及环境感知、动作或路径规划及策略评估等多方面,具有重大理论意义和实际价值。
- 路径规划问题虽已有较长研究历史并形成许多成熟算法,但大多基于已知环境模型及示意图搜查模式。然而在实际中,环境模型常无法建立,且智能机器人动作时受控制偏差和环境因素影响,可能无法按规划路径行走甚至无法到达终点,规划路径也可能曲折复杂不利于实际行走。
(2)运用时间差分法解决路径规划问题
- 采用强化学习中的时间差分法处理未知环境下的路径规划问题。该方法相比其他算法无需建立环境仿真模型,具有自主适应和主动学习能力,能应对智能体运动的随机性。通过仿真模拟实验对该算法进行验证,结果表明时间差分法能够快速收敛,可在任意位置找到到达目标的路径。
- 时间差分法在未知环境下的路径规划中具有独特优势,不依赖已知环境模型,能够通过不断的学习和尝试找到合适的路径,为智能体在复杂未知环境中的行动提供了有效解决方案。
(3)改善强化学习中的研究与使用平衡问题
- 在强化学习中,研究环境和使用环境是两个长期存在的过程。过多研究易导致训练时间过长,过多使用则可能使智能体收敛到不准确的解上,如何平衡二者成为关键研究方向。
- 传统模式通常随训练时间增长降低研究,未考虑环境和问题的复杂程度。本文针对路径规划问题,以智能体到达目标的数目为指标衡量其对环境的掌握程度,实时动态调整研究影响因子。当智能体对环境掌握程度低时,更多地研究环境;掌握程度提高时逐渐减少研究,更多地使用环境。通过仿真模拟实验验证,结果表明改进后的模式能更好地平衡研究与使用,使智能体更快到达目标点。
% 路径规划模拟
environmentSize = [100 100];
startPosition = [10 10];
targetPosition = [90 90];
currentPosition = startPosition;
% 移动方向
directions = [[0 1]; [1 0]; [0 -1]; [-1 0]]; % 上、右、下、左
% 迭代次数
numIterations = 1000;
for iteration = 1:numIterations
% 随机选择一个方向移动
randomDirectionIndex = randi([1 4]);
newPosition = currentPosition + directions(randomDirectionIndex,:);
% 检查新位置是否在环境内且未到达目标
if all(newPosition >= 1) && all(newPosition <= environmentSize) && ~isequal(newPosition, targetPosition)
currentPosition = newPosition;
end
% 检查是否到达目标
if isequal(currentPosition, targetPosition)
disp(['在第 ', num2str(iteration), ' 次迭代到达目标。']);
break;
end
end
% 可视化路径
figure;
imshow(zeros(environmentSize));
hold on;
plot(startPosition(1), startPosition(2), 'go', 'MarkerSize', 10, 'LineWidth', 2);
plot(targetPosition(1), targetPosition(2), 'ro', 'MarkerSize', 10, 'LineWidth', 2);
plot(currentPosition(1), currentPosition(2), 'bo', 'MarkerSize', 10, 'LineWidth', 2);