边缘计算毕业论文题目【附数据】

先定方向,然后定题目,明确研究对象、研究内容、创新点在哪里。

总的来说,最重要的就是定的题目要确保后续能够写的出来,写的顺畅。论文需要的数据提前准备好,案例提前查阅清楚,文献在定题目前至少看上几十篇。

本人长期从事这方面的科研工作,去年光是帮忙修改和润色就有几十篇文章,这里分享一些今年最新的题目及写作指导。

有疑问可以私信或者扫描文章底部二维码

这里也总结了适合今年的选题和数据包,几乎涵盖了所有选题方向。有简单的,有难的。有的题目可以直接用,有的还需要再细化下,稍微改动一下,也能作为创新的选题。

后续会陆续更新

——————————————————————————

基于强化学习的边缘计算卸载优化策略研究

移动边缘计算下无人机部署和任务调度研究

车辆边缘计算任务卸载策略研究

多无人机辅助的移动边缘计算网络中任务卸载联合优化问题研究

基于深度强化学习的多无人机辅助移动边缘计算网络动态卸载及资源分配研究

面向边缘网络的计算卸载与资源分配技术研究

基于深度强化学习的无人机辅助移动边缘计算研究

基于车辆边缘计算的任务卸载策略研究

基于博弈论的物联网边缘计算资源分配机制研究

无人机辅助的移动边缘计算动态任务调度方法研究

NOMA中面向多用户移动边缘计算卸载研究

移动边缘计算下的任务卸载策略研究

移动边缘计算使能的星地网络任务卸载和资源分配

物理层安全辅助的G边缘计算任务卸载关键技术研究

面向QoE的边缘计算资源分配机制研究

多接入边缘计算中数据缓存和任务卸载策略的研究

区块链与多接入边缘计算网络的融合技术研究

基于边缘计算的高效计算迁移与缓存研究

基于深度强化学习的移动边缘计算系统动态计算卸载及资源分配研究

DD通信辅助的移动边缘计算系统性能分析和优化

基于移动边缘计算的蜂窝用户任务卸载计算能耗优化技术研究

基于移动边缘计算的任务协同卸载时延及能耗性能研究

面向移动边缘计算的视频缓存机制研究

面向车联网的边缘计算资源调度策略研究

工业物联网中基于边缘计算和强化学习的计算卸载方法研究

G网络移动边缘计算多场景中服务迁移研究

面向后G移动边缘计算系统的用户任务处理技术研究

移动边缘计算细粒度资源调度和任务卸载

边缘物联网数据处理平台及任务调度系统设计与实现

面向工业互联网的区块链可扩展性研究

边缘计算与车联网融合的应用技术和算法研究

基于边缘计算的高效资源管理研究

面向视频传输的边缘计算资源分配策略研究

无人机辅助移动边缘计算卸载策略研究

面向无人机的移动边缘计算资源调度算法研究

基于边缘计算的无人机多目标任务调度群智能优化方法

通信与计算融合的关键技术研究

多场景下的移动边缘计算任务卸载及资源分配研究

基于边缘计算的工业物联网安全技术研究

边缘计算场景下联邦学习优化方法研究

基于多无人机协同的移动边缘计算任务卸载策略研究

面向边缘智能的联合资源管理技术研究

面向边缘计算的协同计算卸载策略研究

基于移动边缘计算的无线用户任务处理时延优化研究

基于BaaS的边缘智能访问控制系统的研究

面向工业互联网的边缘计算任务卸载决策方法研究

边缘计算环境下的轻量化特征提取网络

基于边缘计算的密集输电通道防外破系统研究

基于智能优化的无人机边缘计算任务调度算法研究

基于边缘计算的奶牛反刍行为实时监测研究

### MiniXception模型介绍 MiniXception是一种轻量级卷积神经网络架构,专为实时面部表情识别设计[^1]。该模型基于更广泛的Xception架构构建,后者是对Google Inception系列架构的一种改进版本[^2]。 #### 架构特点 - **深度可分离卷积层**:与标准卷积不同的是,Xception及其衍生模型采用了一种称为“深度可分离”的方法来减少计成本并提高效率。 - **紧凑的设计**:为了适应资源受限环境下的部署需求,mini_XCEPTION通过简化原版Xception中的某些组件,在保持良好性能的同时显著降低了参数数量和运复杂度。 ```python from keras.layers import Conv2D, DepthwiseConv2D, BatchNormalization, Activation, Input from keras.models import Model def mini_XCEPTION(input_shape=(48, 48, 1), num_classes=7): img_input = Input(shape=input_shape) # Entry flow x = _conv_block(img_input, 32, kernel_size=3, strides=2) x = _depthwise_conv_block(x, 64) # Middle flow with depthwise separable convolutions for i in range(4): residual = x prefix = 'residual_{}'.format(i + 1) x = _depthwise_conv_block(x, 128, block_id=prefix + '_a') x = _depthwise_conv_block(x, 128, block_id=prefix + '_b') x = add([x, residual]) # Exit flow x = _depthwise_conv_block(x, 512) # Classification layer x = GlobalAveragePooling2D()(x) output = Dense(num_classes, activation='softmax')(x) model = Model(inputs=img_input, outputs=output) return model def _conv_block(inputs, filters, alpha=1.0, kernel_size=3, strides=1): channel_axis = 1 if K.image_data_format() == 'channels_first' else -1 x = ZeroPadding2D(padding=((0, 1), (0, 1)))(inputs) x = Conv2D(filters, kernel_size, padding='valid', use_bias=False, strides=strides)(x) x = BatchNormalization(axis=channel_axis)(x) return Activation('relu')(x) def _depthwise_conv_block(inputs, pointwise_filters, alpha=1.0, strides=1, block_id=None): channel_axis = 1 if K.image_data_format() == 'channels_first' else -1 if strides == 1: x = inputs else: x = ZeroPadding2D(((0, 1), (0, 1)))(inputs) x = DepthwiseConv2D((3, 3), padding='same' if strides == 1 else 'valid', depth_multiplier=alpha, strides=strides, use_bias=False)(x) x = BatchNormalization(axis=channel_axis)(x) x = Activation('relu')(x) x = Conv2D(pointwise_filters, kernel_size=1, padding='same', use_bias=False, strides=1)(x) x = BatchNormalization(axis=channel_axis)(x) return Activation('relu')(x) ``` 此代码片段展示了如何创建一个简单的`mini_XCEPTION`实例,并配置其输入形状以及类别数目。值得注意的是,这里实现了两个辅助函数 `_conv_block()` 和 `_depthwise_conv_block()` 来处理不同的卷积操作,从而使得主逻辑更加清晰易读。 #### 编译过程 在完成上述定义之后,可以使用如下方式对该模型进行编译: ```python model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) ``` 这一步骤指定了用于训练的优化法(Adam)、损失函数(分类交叉熵),同时还设置了评估指标——准确性得分。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值