先定方向,然后定题目,明确研究对象、研究内容、创新点在哪里。
总的来说,最重要的就是定的题目要确保后续能够写的出来,写的顺畅。论文需要的数据提前准备好,案例提前查阅清楚,文献在定题目前至少看上几十篇。
本团队长期从事这方面的科研工作,这里分享一些今年最新的题目及写作指导。有具体问题,可以直接留言评论或者扫描底部二维码。
这里总结了适合今年的选题,几乎涵盖了所有选题方向。有简单的,有难的。有的题目可以直接用,有的还需要再细化下,稍微改动一下,也能作为创新的选题。
后续会陆续更新
D1 选题建议+创新方向
D2数据列表
D1 选题建议+创新方向
- 移动边缘计算在车联网中的智能卸载策略优化
- 基于深度表征学习的跨模态哈希算法优化
- 安全多方计算在区块链中的高效实现方法研究
- 区块链支持的车联网隐私保护与认证模型构建
- 使用注意力机制改进神经网络的交通流量预测方法
- 工业互联网中的智能安全态势感知与预测
- 基于深度学习的行人检测与身份重识别技术优化
- 樽海鞘算法改进及其在柔性作业调度中的应用
- 基于模态分解与深度学习的智能交通流预测系统
- 基于预训练模型的图神经网络情感分析创新方法
- 跨模态图卷积网络检索技术的探索与应用
- 风电场短期风速与风电功率预测模型构建与分析
- 贵州龙化石的虚拟重建及3D打印技术研究
- 分布式边缘计算中的任务调度与时延控制方法
- 多接入边缘计算环境下高效任务卸载技术研究
- 集成基片间隙波导的毫米波耦合器设计与优化
- 使用卷积神经网络进行脑电信号分类与特征提取
- 煤矸石智能分选系统中的机器视觉算法优化
- 深度卷积网络在目标检测中的改进与应用
- 小样本图像分类中的深度学习方法探索
- 基于卷积神经网络的儿科肺炎智能辅助诊断系统
- 车载CAN网络的基于神经网络的入侵检测系统研究
- 深度卷积网络架构的设计及其在实际场景中的应用
- 改进神经网络在小样本图像分类中的方法
- 自然场景下的高原鼠兔智能图像分割模型研究
- 边缘计算中协作卸载与资源优化定价模型研究
- 深度学习驱动的驾驶行为智能识别系统
- 多模态情感分析中的自然语言特征提取与融合
- 基于BP神经网络的工业设备故障诊断系统研究
- 车载边缘计算中的容器化计算迁移方案
- 利用深度学习预测位置大数据的发布时间间隔
- 基于K-means的边缘服务器智能部署方法研究
- 车联网中基于区块链的隐私保护云服务机制
- 可见光与红外行人重识别技术中的深度特征学习
- 基于判别子空间学习的跨媒体检索技术创新
- 梯度结构钽电容的多材料3D打印与性能评估
- 无线传感器网络中的基于流量的入侵检测方法
- 多模型融合下的网络安全态势智能预测系统
- 命名数据网络中的车联网隐私保护与智能转发