✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅ 具体问题可以私信或扫描文章底部二维码。
(1) 特征选择在数据挖掘和模式识别中是一个不可忽视的预处理步骤,其目的是在保持甚至提高分类准确率的前提下,减少特征的数量,从而有效降低计算开销和复杂度。特征选择的问题常被视为一种全局组合优化问题,为了从高维数据集中找到最有意义的特征子集,研究者们普遍采用元启发式算法来解决这一难题。元启发式算法通常表现出优良的搜索性能和对复杂性问题的适应能力,但在较大的解空间中,传统的元启发式算法容易陷入局部最优,限制了进一步的优化效果。因此,开发具有更好性能和更强鲁棒性的元启发式算法成为了当前研究的热门方向之一。本文基于蒲公英算法的离散化及改进,提出了一种改进的二进制蒲公英算法(SBDA),并将其用于特征选择问题中。
(2) 改进的二进制蒲公英算法(SBDA)提出了一系列创新策略,以提高算法的有效性和稳定性。首先,为了解决蒲公英算法在处理特征选择过程中数据离散性的问题,我们提出了一种基于二进制形式的蒲公英算法(BDA)。该算法采用一种新的位置更新策略,通过使用传递函数将播种半径映射为位置向量的概率,从而在特征选择过程中有效地决定是否保留某特征。这种二进制策略的核心是通过位置元素的翻转,使得算法能够更精确地探索特征空间。此外,为了进一步增强算法的多样性和鲁棒性,采用了一种全新的变异播种策略,在播种过程中引入了随机性,以确保算法在迭代中跳出局部最优,从而提高整体性能。其次,针对BDA在早期收敛速度较慢的情况,本文设计了一种基于振动函数和历史最优种群的策略,用于调整播种半径,以增加搜索过程的复杂性。该策略有效提升了算法在解空间中的探索性能,并且通过优化搜索方向显著提高了解决特征选择问题的精度。此外,考虑到BDA在某些情况下容易陷入局部最优,本文提出在生成种子阶段使用混沌算子生成混沌种群,从而增强种群的多样性,使得算法能够更好地适应复杂的特征选择问题。
(3) 为了进一步优化特征选择算法的性能,本文受到人类社会中攀比消费行为的启发,提出了一种全新的元启发式算法——攀比消费算法(CCA)。该算法通过对人类攀比消费行为进行数学建模,将个体在社会环境中对比其他人消费决策的特点转化为一种探索和开发状态的权衡策略。在算法的设计中,个体通过攀比其他个体的适应度来调整自身的状态,从而实现局部和全局搜索的平衡。为了验证CCA的性能,本文通过两组基准测试函数对其进行了评估,实验结果表明,相较于其他经典元启发式算法,CCA在多个测试集上的表现具有显著的优越性。CCA不仅在精确度方面表现良好,而且在特征子集的选择过程中展现出了较高的稳定性和鲁棒性。
(4) 另外,为了将CCA有效地应用于特征选择领域,本文对其进行了离散化,并提出了两种改进策略以增强其性能。一方面,为了解决CCA在迭代开始时适应度值随机波动较大的问题,本文结合了最大相关最小冗余(mRMR)方法进行初始化,通过选择具有最大相关性和最小冗余度的特征对种群进行有偏初始化,从而保证算法在迭代初期即具有较好的适应性,这种初始化方式显著降低了初始适应度值的波动,提高了整体的分类精度。另一方面,为了解决CCA在迭代过程中容易陷入局部最优的问题,本文结合莱维飞行提出了一种新的移动策略。在CCA的每次迭代过程中,当算法检测到可能陷入局部最优时,将启动莱维飞行策略,通过长距离的跳跃使个体能够跳出局部最优陷阱。莱维飞行的特点在于其跳跃的不确定性,这种特性有效提高了算法的全局搜索能力,使得CCA在特征选择问题中表现出较强的优化能力和抗局部最优的能力。
(5) 在整个研究过程中,我们针对所提出的两种算法SBDA和CCA进行了大量的实验验证。首先,在不同的数据集上,本文对SBDA与传统的元启发式算法如遗传算法(GA)、粒子群优化算法(PSO)等进行了对比,实验结果表明,SBDA在特征选择的精度和特征集缩减的能力方面表现出更优的性能。其次,本文对CCA的表现也进行了详细的实验分析,通过与其他几种经典的元启发式算法进行对比,CCA在大多数测试集上均取得了更高的分类精度和更小的特征子集,说明了该算法在处理复杂特征选择问题时的潜力和有效性。实验结果还表明,改进的初始化策略和莱维飞行策略的引入显著增强了CCA的鲁棒性,使其能够在更广的搜索空间中保持高效的探索和开发能力。
(6) 本文的研究成果不仅验证了改进后的元启发式算法在特征选择领域的优越性,也为后续的研究工作提供了重要的参考。通过对蒲公英算法和攀比消费算法的创新和改进,本文为复杂数据集特征选择问题提供了新的解决思路和优化策略。此外,本文的研究还表明,将社会行为和自然现象引入到算法设计中,可以有效提升算法的搜索性能,特别是在高维、复杂的数据集上的表现。这为未来的元启发式算法设计提供了新的思考方向,也为解决特征选择中的全局优化问题提供了新的启示。
function selected_features = FeatureSelectionUsingSBDA(data, labels)
% 参数初始化
max_iterations = 100;
population_size = 30;
[num_samples, num_features] = size(data);
% 初始化种群
population = randi([0, 1], population_size, num_features);
best_solution = population(1, :);
best_fitness = EvaluateFitness(best_solution, data, labels);
% 迭代过程
for iter = 1:max_iterations
for i = 1:population_size
% 计算适应度
fitness = EvaluateFitness(population(i, :), data, labels);
% 更新最佳解决方案
if fitness > best_fitness
best_fitness = fitness;
best_solution = population(i, :);
end
end
% 播种策略及变异
for i = 1:population_size
if rand < 0.5
population(i, :) = Mutate(population(i, :));
else
population(i, :) = best_solution;
end
end
% 混沌映射增加种群多样性
if mod(iter, 10) == 0
population = ChaosMapping(population);
end
end
% 返回选择的特征
selected_features = find(best_solution == 1);
end
function fitness = EvaluateFitness(solution, data, labels)
% 计算特征子集的分类精度
selected_data = data(:, solution == 1);
model = fitcsvm(selected_data, labels);
cv = crossval(model);
fitness = 1 - kfoldLoss(cv);
end
function mutated_solution = Mutate(solution)
% 简单的变异操作
mutation_rate = 0.1;
mutated_solution = solution;
for i = 1:length(solution)
if rand < mutation_rate
mutated_solution(i) = 1 - solution(i);
end
end
end
function chaotic_population = ChaosMapping(population)
% 使用混沌映射增加种群多样性
[rows, cols] = size(population);
chaotic_population = population;
for i = 1:rows
for j = 1:cols
if rand < 0.3
chaotic_population(i, j) = 1 - chaotic_population(i, j);
end
end
end
end