✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅ 具体问题可以私信或扫描文章底部二维码。
本文提出了一种基于深度学习的混凝土裂缝图像语义分割方法,针对混凝土裂缝图像的特点,进行了数据集创建、模型设计、性能优化等多方面的研究,主要内容分为以下几个方面:
(1) 数据集构建与预处理
针对现有混凝土裂缝数据集缺乏代表性、样本质量参差不齐的问题,本文进行了数据集的重新构建。通过手持设备在实际工程现场对混凝土结构的裂缝进行了多次拍摄,获取了大量高分辨率的裂缝图像。针对这些图像,使用了Label Img Plus工具进行逐像素的标注,确保裂缝部位的准确性,从而构建了包含2000张裂缝图像样本和对应标签的混凝土裂缝数据集。
为了增强模型在实际环境中的适用性和鲁棒性,本文引入了一个桥梁结构裂缝公开数据集,该数据集包含了与混凝土裂缝相似的其他材料裂缝图像,增加了2000张裂缝图像样本。通过将自建数据集与公开数据集相融合,最终构建了一个更具代表性、鲁棒性强的新数据集,为后续模型的训练和性能测试提供了丰富的数据支持。
(2) 基于深度学习的编码-解码结构设计
针对裂缝在图像中通常细小、裂缝像素较少导致难以分割的问题,本文提出了一种基于编码-解码结构的全卷积裂缝图像语义分割方法。在该方法中,首先提出了一种引入残差模块的编码-解码结构,用于提取和恢复裂缝特征。通过实验研究了不同类型的残差块对网络性能的影响,最终找到了适用于裂缝图像分割的残差块参数配置。
除了残差模块的设计之外,本文还对网络宽度和连接策略进行了研究。为了提升模型对裂缝图像的识别能力,不同连接策略被应用于编码和解码之间,以更好地融合来自不同尺度的特征。通过这些策略,模型在处理裂缝的精度上有了显著提升。
为了应对裂缝像素与背景像素比例严重失衡的问题,本文提出了一种改进的损失函数,结合了焦点损失和样本相似度损失。这一损失函数有效地减弱了背景像素对整体损失的影响,确保裂缝区域的像素能够得到更加精确的优化,从而提高了裂缝分割的精度。最终模型在裂缝分割任务中的主要精度指标达到了87.00%,显示出良好的效果。
(3) 模型的优化与实时性提升
当前混凝土裂缝图像语义分割模型普遍存在推理速度较低的问题,这在实时检测的应用场景中成为瓶颈。为了改善这一问题,本文提出了一种优化的基于编码-解码结构的全卷积裂缝图像分割方法。首先,本文通过降低编码-解码结构的深度,将原始网络的25层减少到19层,这显著降低了模型的复杂度和参数量,从而减少了计算开销。
另外,本文用普通卷积替代了较为耗时的全维动态卷积,从而进一步加快了模型的推理速度。此外,在编码-解码结构的中间部分插入了一个增强模块,以加强不同上下文特征之间的联系,使得模型在保持精度的同时可以获得显著的速度提升。经过优化后,模型的帧率达到了133帧/秒,相较于现有方法有了显著的提升,这使得其在边缘计算平台上的实时检测成为可能。
(4) 模型部署与应用
为了验证本文方法在实际环境中的可行性,本文将训练得到的模型转换为开放神经网络交换格式(ONNX),并将其部署到边缘计算平台上进行测试。实验结果表明,该模型在性能较低的边缘计算设备上仍然能够满足实时检测的要求,避免了传统基于云计算检测方法可能带来的时延和网络不稳定性问题。
通过对不同输入尺寸下的模型表现进行测试,本文总结了在移动端设备上进行混凝土裂缝图像分割任务的规律,并提出了一些优化部署的建议。具体来说,对于不同硬件性能的移动设备,本文提出了相应的输入图像大小调整方案,以在确保检测精度的同时进一步提升检测速度。
综上所述,本文提出的基于深度学习的混凝土裂缝图像语义分割方法通过多方面的创新与优化,不仅在裂缝分割的精度上取得了较高的水平,同时也在实际部署环境中验证了其实时性和有效性,为未来智能基础设施的自动检测提供了重要的参考和技术支持。
% 初始化设置
clc;
clear;
close all;
% 加载数据集
imageDir = 'crack_images/';
labelDir = 'crack_labels/';
imageData = imageDatastore(imageDir);
labelData = pixelLabelDatastore(labelDir, {'crack', 'background'}, [1 2]);
% 数据集划分
[trainImages, valImages, trainLabels, valLabels] = partitionData(imageData, labelData, 0.8);
% 网络架构
lgraph = layerGraph();
inputLayer = imageInputLayer([256 256 3], 'Name', 'input');
convLayer1 = convolution2dLayer(3, 64, 'Padding', 'same', 'Name', 'conv1');
reluLayer1 = reluLayer('Name', 'relu1');
poolLayer1 = maxPooling2dLayer(2, 'Stride', 2, 'Name', 'pool1');
% 添加层到网络
lgraph = addLayers(lgraph, inputLayer);
lgraph = addLayers(lgraph, convLayer1);
lgraph = addLayers(lgraph, reluLayer1);
lgraph = addLayers(lgraph, poolLayer1);
% 连接层
lgraph = connectLayers(lgraph, 'input', 'conv1');
lgraph = connectLayers(lgraph, 'conv1', 'relu1');
lgraph = connectLayers(lgraph, 'relu1', 'pool1');
% 剩余部分网络构建
convLayer2 = convolution2dLayer(3, 128, 'Padding', 'same', 'Name', 'conv2');
reluLayer2 = reluLayer('Name', 'relu2');
upconvLayer = transposedConv2dLayer(4, 64, 'Stride', 2, 'Cropping', 'same', 'Name', 'upconv');
lgraph = addLayers(lgraph, convLayer2);
lgraph = addLayers(lgraph, reluLayer2);
lgraph = addLayers(lgraph, upconvLayer);
% 连接剩余层
lgraph = connectLayers(lgraph, 'pool1', 'conv2');
lgraph = connectLayers(lgraph, 'conv2', 'relu2');
lgraph = connectLayers(lgraph, 'relu2', 'upconv');
% 训练设置
options = trainingOptions('adam', ...
'MaxEpochs', 30, ...
'InitialLearnRate', 1e-3, ...
'ValidationData', {valImages, valLabels}, ...
'Plots', 'training-progress');
% 训练网络
net = trainNetwork(trainImages, trainLabels, lgraph, options);
% 评估
predLabels = semanticseg(valImages, net);
diceResult = dice(predLabels, valLabels);
fprintf('Dice系数: %.2f\n', mean(diceResult));