✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅ 具体问题可以私信或扫描文章底部二维码。
(1) 电机数学模型的改进与多物理场建模
高速永磁电机由于其高功率密度和高效率的特点,广泛应用于各种高性能场合。然而,高速运行中转子涡流效应会显著影响电机的性能,导致传统数学模型的精度下降。本文在电机数学模型方面,针对高速永磁电机中显著的转子涡流效应,提出了一种计及转子涡流反应场的改进模型。在时域模型中,采用虚拟短路绕组的方法来模拟转子中的涡流反应,从而能够更准确地描述涡流对定子磁链的影响。虚拟绕组的参数通过静止频率响应试验获得,从而实现模型的参数化和精度提升。在频域模型中,引入了定转子综合电感的概念,综合考虑了涡流效应对电机磁链的作用,进一步采用解析法实现该电感的快速计算。此外,本文还详细分析了贝塞尔函数类型对涡流场计算稳定性的影响,确保了频域计算的准确性和稳定性。这些改进为后续的电磁和热流体分析提供了基础,奠定了电机多物理场综合分析的框架。
(2) 电磁分析与热流体场分析
在电磁性能分析方面,本文从基波和谐波两个层面进行详细研究。在基波层面,通过结合电机的基波参数与变流器容量约束,确定电机的基波工作点并评估其运行性能。在谐波层面,将变流器的脉宽调制(PWM)电压波形代入频域模型,计算电机的电流谐波,进而建立谐波激励下铁耗、铜耗以及转子涡流损耗的解析模型。这一方法使得电机在变流器供电条件下的电磁损耗得以快速、准确地计算,提升了整体电磁性能评估的效率。
在热流体场分析中,本文建立了高速永磁电机的三维集总参数热网络模型,以实现电机内部温度场的快速计算。针对高速电机中特有的气隙流动问题,本文基于不同气隙尺寸与空气温度条件下的计算流体力学(CFD)分析结果,构建了气隙对流换热系数及其风摩损耗的代理模型。这一代理模型能够快速预测气隙中的对流换热特性和风摩损耗,从而在不同工况下快速准确地预测电机的温度分布。通过电磁场和热流体场之间的相互影响,采用温度迭代的方式不断更新各物理场的计算结果,实现了高速永磁电机多物理场的综合建模与分析。
(3) 转子强度与动力学性能分析
在高速永磁电机的机械设计中,转子强度与动力学性能是两个重要的考量因素。本文在转子强度分析方面,基于表贴式永磁转子的应力解析模型,结合转子的极限应力工况,提出了一种以材料尽限利用为目标的转子护套最小厚度计算方法。由于护套的过盈量受制造工艺限制,本文对传统的护套厚度设计进行了改进,提出了计及过盈装配工艺约束的护套设计方案,实现了表贴式永磁电机转子护套的快速设计。这一方法在确保护套安全性的同时,最大程度地降低了护套厚度,从而减少了电机运行时的损耗,提高了整体效率。
在转子动力学性能分析方面,本文建立了转子临界转速的解析与有限元分析模型,研究了不同尺寸和转速对临界转速的影响因素。通过对不同转子结构的有限元分析结果进行整理,本文建立了转子关键临界转速的代理模型,能够快速准确地对转子的动力学性能进行评估。结合前述的电磁和热流体分析结果,本文综合考虑了各物理场之间的相互影响,以温度迭代的方式实现了多物理场之间的耦合计算与优化设计。在明确优化参数、约束条件以及优化目标后,应用多物理场综合分析模型对高速永磁电机的关键尺寸参数进行了全局优化。优化结果显示,该设计方案有效抑制了电机的最高局部温升,并显著提高了电机的效率。
(4) 样机研制与实验验证
为验证所提出多物理场快速分析方法的有效性,本文研制了一台300kW、26krpm的大功率高速永磁电机样机,并开展了相关的实验测试。通过空载与负载实验,对比分析实验数据与设计计算值,结果表明所提出的多物理场分析方法能够较好地预测电机的性能指标,包括温度分布、电磁损耗以及机械特性等。实验结果验证了本文提出的数学模型与多物理场综合设计方法的有效性和准确性,为后续的大功率高速永磁电机设计与优化提供了重要的理论基础和实践支持。
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import minimize
# 定义电磁损耗计算函数
def electromagnetic_losses(current, frequency, resistance):
copper_loss = resistance * current ** 2
eddy_current_loss = 0.1 * frequency * current ** 2
return copper_loss + eddy_current_loss
# 定义热流体对流换热系数计算函数
def convective_heat_transfer_coefficient(gap_size, air_temp):
return 10 + 0.5 * gap_size - 0.02 * air_temp
# 定义温度分布计算函数
def temperature_distribution(power_loss, conv_coeff, ambient_temp):
return ambient_temp + power_loss / (conv_coeff * 0.01)
# 参数初始化
current = 300 # 电流 (A)
frequency = 26000 # 频率 (Hz)
resistance = 0.05 # 电阻 (Ohm)
gap_size = 0.002 # 气隙尺寸 (m)
air_temp = 25 # 空气温度 (℃)
ambient_temp = 20 # 环境温度 (℃)
# 计算电磁损耗
power_loss = electromagnetic_losses(current, frequency, resistance)
# 计算对流换热系数
conv_coeff = convective_heat_transfer_coefficient(gap_size, air_temp)
# 计算温度分布
motor_temp = temperature_distribution(power_loss, conv_coeff, ambient_temp)
# 输出结果
print(f"电磁损耗: {power_loss:.2f} W")
print(f"对流换热系数: {conv_coeff:.2f} W/(m^2*K)")
print(f"电机温度: {motor_temp:.2f} ℃")
# 绘制温度变化图
gap_sizes = np.linspace(0.001, 0.005, 100)
temps = [temperature_distribution(power_loss, convective_heat_transfer_coefficient(g, air_temp), ambient_temp) for g in gap_sizes]
plt.plot(gap_sizes, temps)
plt.xlabel('Gap Size (m)')
plt.ylabel('Motor Temperature (℃)')
plt.title('Motor Temperature vs. Gap Size')
plt.grid(True)
plt.show()