电力变压器局部放电类型识别的深度学习与增量学习轻量化部署研究【附代码】

博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。


(1)电力变压器作为电力系统中的关键设备,其运行状态直接关系到整个电力系统的安全与稳定。局部放电是变压器绝缘材料劣化的主要原因之一,同时也是突发故障的先兆。准确识别局部放电类型对于及时发现潜在的绝缘缺陷、评估风险严重性具有重要意义。近年来,深度学习技术的发展为局部放电的智能识别提供了新的解决方案。通过深度学习模型,可以从大量局部放电数据中自动学习特征,实现对不同放电类型的精准分类。然而,实际应用中,变压器局部放电数据存在类别不平衡和标签缺失的问题,这严重影响了深度学习模型的训练效果和识别精度。为了解决这些问题,本研究提出了一种基于生成式对抗网络(GAN)的数据增强方法,旨在平衡局部放电数据的类别分布。该方法通过改进GAN中的判别器和生成器,增强了模型的生成能力,并通过附加标签信息实现了按类别扩充样本的功能。实验结果表明,与传统方法相比,所提方法生成的样本质量更高,能够有效改善深度模型对少数类放电缺陷的识别能力。此外,该方法还成功应用于局部放电相位分布图谱(PRPD)的数据增强,展现了优异的性能。

(2)针对无标签局部放电数据的利用问题,本研究提出了一种基于图卷积网络(GCN)和虚拟对抗训练(VAT)的半监督识别方法。该方法不仅考虑了PRPD图谱的局部空间相邻性和特征相似性,还通过融合VAT和伪标签(PL)策略,将无标签样本纳入到特征挖掘过程中。这一创新性方法有效解决了传统研究中对无标签样本利用不足的问题,显著减少了对有标签样本的需求量。实验结果显示,通过利用无标签样本,该方法的识别率相比传统方法提升了6%~14%,大幅降低了人工标注现场放电缺陷的时间和人力成本。更重要的是,该方法在处理来源复杂的现场变压器和电抗器局部放电数据时表现出高度的可靠性,进一步验证了其在实际应用中的价值。

(3)考虑到局部放电数据的流式特性以及深度识别模型的增量更新需求,本研究提出了一种结合知识蒸馏和图神经网络(GNN)的增量学习策略。该策略通过最小化代表性历史数据的蒸馏损失,继承了原始模型对局部放电历史数据的辨识能力;同时,利用先验知识指导新增局部放电数据的学习,逐步增强模型对新数据的泛化能力。特别地,为适应新数据规模的不确定性,研究团队引入了GNN来协同学习不同类型放电样本间的丰富关联信息,从而在少样本场景下也能实现高效的增量学习。实验结果证明,该方法无需重新训练即可快速学习新增的局部放电数据,且显存占用仅为重新训练的32.1%,这对于实际部署场景下的深度模型自更新和自维护具有重要意义。

此外,为了满足局部放电深度识别模型在电力智能终端上的部署需求,本研究还提出了一种基于深度-广度联合剪枝的模型结构优化设计方法。该方法以MobileNetV2为基础,通过自主感知重要度因子并裁剪模型中的冗余模块,实现了“端到端”的深度方向剪枝;在此基础上,结合几何均值滤波器剪枝和增强型模拟退火算法,高效地剪枝卷积层中冗余的滤波器,进一步精简了广度方向的结构。实验结果表明,该方法能够在保持高精度的同时,大幅降低模型的资源占用和推理延迟,成功在一110kV变压器的出厂试验中实现了对放电缺陷类型的准确判定,展示了其在实际应用中的巨大潜

 

 
import numpy as np
import tensorflow as tf
from tensorflow.keras.layers import Input, Conv2D, Dense, Flatten, Dropout, BatchNormalization, Activation
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from tensorflow.keras.utils import to_categorical

# 加载数据集
def load_data():
    # 假设数据集已经预处理为X和y
    X = np.random.rand(1000, 64, 64, 1)  # 1000个64x64的图像,灰度图
    y = np.random.randint(0, 5, 1000)     # 5个类别
    return X, y

# 数据预处理
def preprocess_data(X, y):
    le = LabelEncoder()
    y = le.fit_transform(y)
    y = to_categorical(y)
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
    return X_train, X_test, y_train, y_test

# 构建深度学习模型
def build_model(input_shape, num_classes):
    inputs = Input(shape=input_shape)
    x = Conv2D(32, (3, 3), padding='same')(inputs)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    x = Conv2D(32, (3, 3), padding='same')(x)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    x = MaxPooling2D(pool_size=(2, 2))(x)
    x = Dropout(0.25)(x)

    x = Conv2D(64, (3, 3), padding='same')(x)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    x = Conv2D(64, (3, 3), padding='same')(x)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    x = MaxPooling2D(pool_size=(2, 2))(x)
    x = Dropout(0.25)(x)

    x = Flatten()(x)
    x = Dense(512)(x)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    x = Dropout(0.5)(x)
    outputs = Dense(num_classes, activation='softmax')(x)

    model = Model(inputs=inputs, outputs=outputs)
    return model

# 编译和训练模型
def compile_and_train(model, X_train, y_train, X_test, y_test, epochs=50, batch_size=32):
    model.compile(optimizer=Adam(lr=0.001), loss='categorical_crossentropy', metrics=['accuracy'])
    history = model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=epochs, batch_size=batch_size)
    return history

# 主函数
def main():
    X, y = load_data()
    X_train, X_test, y_train, y_test = preprocess_data(X, y)
    input_shape = X_train.shape[1:]
    num_classes = y_train.shape[1]
    
    model = build_model(input_shape, num_classes)
    history = compile_and_train(model, X_train, y_train, X_test, y_test)
    
    # 可视化训练过程
    plt.figure(figsize=(12, 4))
    plt.subplot(1, 2, 1)
    plt.plot(history.history['accuracy'], label='Training Accuracy')
    plt.plot(history.history['val_accuracy'], label='Validation Accuracy')
    plt.xlabel('Epochs')
    plt.ylabel('Accuracy')
    plt.legend()
    
    plt.subplot(1, 2, 2)
    plt.plot(history.history['loss'], label='Training Loss')
    plt.plot(history.history['val_loss'], label='Validation Loss')
    plt.xlabel('Epochs')
    plt.ylabel('Loss')
    plt.legend()
    
    plt.show()

if __name__ == "__main__":
    main()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值