基于深度学习的大气压等离子体非连续放电模拟及放电参数效应分析【最新】

博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。


(1)大气压介质阻挡脉冲放电的深度学习计算与参数效应研究

大气压低温等离子体在国际上是气体放电与等离子体领域的研究热点,特别是在催生等离子体医学等新兴交叉学科后,其重要性愈发凸显。与低气压放电不同,大气压下气体放电过程剧烈且不稳定,气体加热效应严重。而引入非连续放电技术可提高稳定性、抑制加热效应、降低功耗,并带来多个放电运行控制参数,有利于调控和优化放电过程。不过,当前对于大气压非连续放电等离子体仍有诸多问题,如相邻放电过程相互作用机理不明、部分放电演化行为缺乏合理解释、放电性质与参数关系研究不足,且传统数值模拟方法难以满足等离子体医学等应用对实时诊断、监测和调控的需求。

我们利用深度学习模型对大气压介质阻挡脉冲放电进行研究。通过该模型系统地计算了电流密度和气体电压随时间的演化特性,并给出了电流峰值时刻的电子密度、离子密度和电场强度的空间分布。将深度学习模型计算结果与流体模拟结果对比验证,发现经过良好训练的模型能在极短的 0.01 秒内以高精度实时输出介质阻挡脉冲放电的关键特征参量,这对于快速仿真和研究放电参数效应意义重大。

在研究放电参数效应方面,有一些重要发现。当固定脉冲电压上升率而增加电压幅值时,击穿电压和电流密度等放电特征参量几乎不变。这表明在这种情况下,电压幅值的改变对这些关键参数影响较小。然而,当固定电压幅值而增加上升率时,情况则不同,电流密度和击穿电压呈线性增加,同时电流峰值时刻的带电粒子密度峰值和鞘层电场也显著增强。从流体模型理论推导来看,进一步证明了介质阻挡脉冲放电的击穿电压几乎线性依赖于电压上升率。这一系列变化体现了电压上升率对放电过程的重要影响。此外,当脉冲重复频率增加时,放电空间中的残余带电粒子会显著影响放电的演化特性,使得击穿电压和电流密度逐渐降低,并在较高频率下趋于稳定。这种由于残余带电粒子在不同脉冲重复频率下对放电特性的影响,为进一步理解和控制介质阻挡脉冲放电过程提供了关键信息。

(2)大气压脉冲调制射频放电的深度学习计算与参数效应研究

同样借助深度学习模型,我们对大气压脉冲调制射频放电展开了深入研究,计算了电压、电流密度、电子密度和电子温度等特征参量的时域演化特性,并给出了电流峰值时刻的带电粒子密度和电场的空间分布。与流体模拟结果对比验证后可知,训练良好的深度学习模型能在 0.01 秒内高精度地实时输出脉冲调制射频放电的重要特征参量,这有助于更好地展现放电的演化特性与放电参数效应。

在研究放电参数对放电特性的影响时,得到了一些有价值的结论。为了在获得更高电子密度与电子温度的同时减少功率损耗及降低气体温度,应当在脉冲调制射频放电中采取 50% 左右的占空比以及较低的调制频率。这种参数设置可以在保证较高电子相关参数的同时,实现对功率和气体温度的有效控制。另一方面,若要在放电运行过程中获得较为连续的射频等离子体,则应当采取较高的调制频率,并通过增加占空比等方式提高等离子体密度。这说明不同的目标需要不同的参数组合来实现。

此外,电压开启前放电空间中的带电粒子密度及其空间分布结构均会对电压开启阶段的放电演化特性产生显著影响。而且,随着电压调制比的增加,放电电流密度等特征参量表现出先下降后上升的演化趋势,并在电压调制比为 0.55 附近时达到极小值。这些现象表明电压调制比、带电粒子密度及其分布结构等因素在脉冲调制射频放电过程中相互作用,共同影响放电的特性,对于深入理解和优化脉冲调制射频放电具有重要意义。

(3)大气压脉冲调制特高频放电的流体模型计算与参数效应研究

使用流体模型对大气压脉冲调制特高频放电进行研究,重点关注其电压开启阶段第一个周期内出现的首电流脉冲现象。通过流体模拟计算发现,随着电源频率从 50MHz 提升至 800MHz,首电流脉冲幅值逐渐增加。这一变化趋势表明电源频率对首电流脉冲幅值有着重要影响。特高频电压极高的上升率使得瞬时阳极附近在首电流脉冲期间出现电子聚集并引发正极性电场,这个电场能够反向加速电子,从而产生首电流脉冲现象。这一机理的揭示对于理解首电流脉冲的产生原因至关重要。

在放电过程中,最大电子温度在首电流脉冲期间获得,而最大电子密度则在电压开启阶段的最后一个周期取得。这体现了不同物理量在放电过程不同阶段的变化特点。当极板上覆盖电介质后,电压开启阶段的第一个正负半周期内会各出现一次大电流脉冲现象。这种现象的出现与电介质的存在密切相关。

当占空比增加时,首电流脉冲幅值先上升并在占空比约 70% 时达到极大值,随后逐渐下降,在占空比为 100% 的连续型放电中首电流脉冲现象消失。这表明占空比与首电流脉冲幅值之间存在着复杂的关系。当调制频率增加时,首电流脉冲幅值逐渐下降,体现了调制频率对首电流脉冲幅值的影响。

针对脉冲调制特高频放电中相关时间尺度效应的计算结果显示,首电流脉冲现象仅出现在电压上升率较高的条件下。当电压开启时间增加时,首电流脉冲幅值显著升高,且稳定后的电流脉冲幅值也有所上升。而当电压关断时间增加时,放电空间中的电荷分离程度和带电粒子密度会共同影响放电特性,首电流脉冲幅值先上升后下降,稳定后的电流脉冲幅值则始终下降。这些时间尺度效应的研究结果为全面理解脉冲调制特高频放电特性提供了丰富的信息。

(4)大气压脉冲放电与脉冲调制射频放电耦合级联介质阻挡放电的流体模型计算与参数效应研究

对于大气压脉冲放电与脉冲调制射频放电耦合级联介质阻挡放电,我们使用流体模型计算其演化特性和放电参数效应。计算结果表明,脉冲放电产生的大量亚稳态氦原子和种子电子能够有效增强射频放电的起辉过程,这一结果与实验诊断数据相符,进一步验证了计算的可靠性。

在射频电压开启阶段的第一个周期内,瞬时阳极附近会出现正极性电场,该电场能够再次加速电子,从而在耦合级联放电中产生首电流脉冲现象。这一现象与之前研究的其他放电形式中的首电流脉冲现象有相似之处,但也有其独特的产生机制。

缩短脉冲放电与射频放电之间时间间隔与增加脉冲电压上升率均能显著提高首电流脉冲幅值与首电流脉冲峰值时刻的电子密度,同时放电稳定后的电流脉冲幅值和电子密度却几乎不受影响。这一发现为优化耦合级联放电过程提供了可能的方向。

通过耦合级联介质阻挡放电与脉冲调制介质阻挡特高频放电的对比研究发现,射频电压施加前特定的带电粒子密度空间分布与较高的电压上升率均能够在电压开启阶段的第一个周期内在瞬时阳极附近引发与阴极侧同极性的内建电场,从而产生首电流脉冲现象,且在负半周期的首电流脉冲形成过程中,介质板的表面电荷发挥了关键性作用。这些研究结果深入揭示了不同类型放电之间的联系与区别,以及各种因素在放电过程中的作用。

(5)裸电极脉冲放电的流体模型计算与参数效应研究及与介质阻挡脉冲放电对比

使用流体模型对裸电极脉冲放电的演化特性及其放电参数效应进行研究,并与介质阻挡脉冲放电特性进行对比。计算结果表明,裸电极脉冲放电在整个电压施加过程中只发生一次明显的放电,其电流密度峰值出现在电压坪区阶段的结束时刻。这一特点与介质阻挡脉冲放电有明显区别。

在放电电流上升过程中,鞘层电场迅速升高,同时鞘层厚度持续收缩。与介质阻挡脉冲放电相比,裸电极脉冲放电仅需较低的外施电压即可获得较高的电子密度和电子温度。这显示了两种放电形式在能量利用和电子相关参数获取方面的差异。

放电的熄灭是由外施电压的下降造成的,大量空间电荷会在电压下降阶段建立起阳极鞘层电场,该电场能够再次加速阳极附近的电子,从而产生一个小幅的反向放电过程。这一过程为理解裸电极脉冲放电的熄灭和后续小幅度放电现象提供了依据。

裸电极脉冲放电表现出与介质阻挡脉冲放电完全不同的放电参数效应。当外施电压坪区时间或电压幅值增加时,放电电流密度显著增加,电流峰值时刻的鞘层电场和带电粒子密度也会随之快速上升。当固定电压幅值而增加电压上升率时,电流密度和电子温度会有所下降。而且,电压施加前放电空间中的残余带电粒子能够显著促进裸电极脉冲放电的发展,当重复频率增加时,电流密度迅速增加,电流峰值时刻的鞘层电场和带电粒子密度峰值也会明显升高。这些参数效应的研究结果为进一步区分和理解两种放电形式提供了丰富的信息。

(6)大气压介质阻挡脉冲放电时域非线性行为的频率效应计算研究

使用流体模型计算大气压介质阻挡脉冲放电时域非线性行为的频率效应,以获得放电状态随重复频率的演化路径。计算结果表明,随着重复频率的降低,即在固定外施电压波形不变的前提下增加放电间隔时间,介质阻挡脉冲放电会在电流密度逐渐升高的同时出现倍周期分岔行为,并逐渐演化为混沌态放电。这一演化过程体现了重复频率对放电状态的重要影响。

残余鞘层区内尚未完全消散的离子在非线性演化行为中起到了关键作用,其能够抑制下一次放电起辉过程中的气体电压增长并降低放电电流密度,从而使介质阻挡脉冲放电运行在周期二状态。这一发现揭示了离子在放电过程中的特殊作用。

当重复频率继续下降时,残余鞘层区内的离子密度逐渐升高,使得周期二放电中相邻两次放电过程的差异越来越大。当放电空间中的带电粒子密度分布无法在两个电压重复周期后恢复至原来状态时,放电会沿倍周期分岔路径演化至周期四状态。这一系列变化展示了放电状态随重复频率变化的复杂演化过程。

进一步的计算数据表明,当重复频率降低至 10kHz 以下时,残余鞘层区及其内部的离子将会完全消散,此时介质阻挡脉冲放电也会重新回归到稳定的周期一状态。这一结果为理解介质阻挡脉冲放电在不同频率下的行为提供了完整的图像,对于研究和控制这种放电形式的稳定性具有重要意义。

 

# 假设这是一个大气压放电等离子体特性模拟程序

# 定义大气压介质阻挡脉冲放电类
class DielectricBarrierPulseDischarge:
    def __init__(self, voltage_amplitude, voltage_rise_rate, pulse_repeat_frequency):
        self.voltage_amplitude = voltage_amplitude
        self.voltage_rise_rate = voltage_rise_rate
        self.pulse_repeat_frequency = pulse_repeat_frequency
        self.current_density = []
        self.gas_voltage = []
        self.electron_density = []
        self.ion_density = []
        self.electric_field_strength = []

    def simulate_discharge(self):
        # 模拟电流密度和气体电压随时间的演化
        for time in range(100):
            if time < 50:
                self.current_density.append(0.1 * time)
                self.gas_voltage.append(self.voltage_amplitude * (time / 50))
            else:
                self.current_density.append(0.1 * (100 - time))
                self.gas_voltage.append(self.voltage_amplitude - self.voltage_amplitude * ((time - 50) / 50))

        # 假设在电流峰值时刻(这里简单设为第50个时间步)的电子密度、离子密度和电场强度分布
        self.electron_density = [0.5 if position < 5 else 0 for position in range(10)]
        self.ion_density = [0.3 if position < 5 else 0 for position in range(10)]
        self.electric_field_strength = [10 if position < 5 else 0 for position in range(10)]

# 定义深度学习模型类用于介质阻挡脉冲放电
class DeepLearningModel_DBD:
    def __init__(self):
        self.trained_data = None

    def train(self, discharge_data):
        # 这里简单模拟训练过程
        self.trained_data = discharge_data

    def predict(self):
        if self.trained_data:
            return self.trained_data
        return None

# 模拟大气压介质阻挡脉冲放电的操作
discharge_1 = DielectricBarrierPulseDischarge(100, 5, 100)
discharge_1.simulate_discharge()

model_1 = DeepLearningModel_DBD()
model_1.train(discharge_1)
predicted_data_1 = model_1.predict()

# 定义大气压脉冲调制射频放电类
class PulseModulatedRF_Discharge:
    def __init__(self, duty_cycle, modulation_frequency, voltage_modulation_ratio):
        self.duty_cycle = duty_cycle
        self.modulation_frequency = modulation_frequency
        self.voltage_modulation_ratio = voltage_modulation_ratio
        self.voltage = []
        self.current_density = []
        self.electron_density = []
        self.electron_temperature = []
        self.charged_particle_density_at_peak = []
        self.electric_field_at_peak = []

    def simulate_discharge(self):
        # 模拟电压、电流密度等特征参量的时域演化
        for time in range(100):
            self.voltage.append(self.duty_cycle * 100 * (math.sin(2 * math.pi * self.modulation_frequency * time / 100)))
            if time < 50:
                self.current_density.append(0.05 * time)
                self.electron_density.append(0.2 * time)
                self.electron_temperature.append(300 + 2 * time)
            else:
                self.current_density.append(0.05 * (100 - time))
                self.electron_density.append(0.2 * (100 - time))
                self.electron_temperature.append(300 + 2 * (100 - time))

        # 假设在电流峰值时刻(这里简单设为第50个时间步)的带电粒子密度和电场分布
        self.charged_particle_density_at_peak = [0.4 if position < 5 else 0 for position in range(10)]
        self.electric_field_at_peak = [8 if position < 5 else 0 for position in range(10)]

# 定义深度学习模型类用于脉冲调制射频放电
class DeepLearningModel_PMRF:
    def __init__(self):
        self.trained_data = None

    def train(self, discharge_data):
        # 这里简单模拟训练过程
        self.trained_data = discharge_data

    def predict(self):
        if self.trained_data:
            return self.trained_data
        return None

# 模拟大气压脉冲调制射频放电的操作
discharge_2 = PulseModulatedRF_Discharge(0.5, 10, 0.5)
discharge_2.simulate_discharge()

model_2 = DeepLearningModel_PMRF()
model_2.train(discharge_2)
predicted_data_2 = model_2.predict()

# 定义大气压脉冲调制特高频放电类
class PulseModulatedUHF_Discharge:
    def __init__(self, power_frequency, duty_cycle, modulation_frequency, voltage_on_time, voltage_off_time):
        self.power_frequency = power_frequency
        self.duty_cycle = duty_cycle
        self.modulation_frequency = modulation_frequency
        self.voltage_on_time = voltage_on_time
        self.voltage_off_time = voltage_off_time
        self.current_pulse_amplitude = 0
        self.electron_temperature_max = 0
        self.electron_density_max = 0

    def simulate_discharge(self):
        # 模拟首电流脉冲幅值等特性随参数变化
        self.current_pulse_amplitude = 0.1 * self.power_frequency
        self.electron_temperature_max = 500 + 0.5 * self.duty_cycle * 100
        self.electron_density_max = 0.3 + 0.001 * self.modulation_frequency

        if self.voltage_on_time > 5:
            self.current_pulse_amplitude *= 1.2
        if self.voltage_off_time > 3:
            self.current_pulse_amplitude = self.current_pulse_amplitude * 1.1 if self.current_pulse_amplitude < 5 else self.current_pulse_amplitude * 0.9

# 模拟大气压脉冲调制特高频放电的操作
discharge_3 = PulseModulatedUHF_Discharge(100, 0.6, 20, 6, 4)
discharge_3.simulate_discharge()

# 定义大气压脉冲放电与脉冲调制射频放电耦合级联介质阻挡放电类
class CoupledCascadeDischarge:
    def __init__(self, pulse_rf_interval, pulse_voltage_rise_rate):
        self.pulse_rf_interval = pulse_rf_interval
        self.pulse_voltage_rise_rate = pulse_voltage_rise_rate
        self.first_current_pulse_amplitude = 0
        self.electron_density_at_peak = 0

    def simulate_discharge(self):
        # 模拟首电流脉冲幅值和电子密度等特性
        self.first_current_pulse_amplitude = 0.2 * self
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值