多源异构数据驱动的路面感知与三维目标检测研究【附数据】

博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。


(1)多源异构信息融合路面感知系统的基础构建

在智能网联车辆和可控悬架系统快速发展的背景下,利用车辆丰富传感器提升乘坐舒适性备受关注。垂向控制的路面感知工作环境复杂、精度要求高,传统单一传感器系统存在局限,而多源异构信息融合感知技术对提升底盘性能和舒适性意义非凡。

对于多源异构信息融合路面感知系统,硬件选型是关键的第一步。在众多硬件中,单目相机、MEMS 固态激光雷达和惯导是重要组成部分。单目相机具有成本低、易于安装等特点,能够捕捉车辆前方的视觉图像信息,但它的深度感知能力相对较弱,需要通过算法来进一步分析图像中的物体距离等信息。MEMS 固态激光雷达则在三维空间信息获取方面表现出色,它可以精确地扫描出车辆周围的点云数据,这些点云数据对于构建路面的三维模型至关重要。不过,激光雷达也有其局限性,比如数据量巨大、容易受到环境因素(如恶劣天气)的影响等。惯导系统可以为整个感知系统提供车辆的姿态和运动信息,在车辆行驶过程中,惯导数据能够帮助其他传感器更好地理解自身的运动状态,从而提高感知的准确性。

在传感器联合标定方面,相机 - 激光雷达以及激光雷达 - 惯导联合标定原理的建模至关重要。通过准确的标定,可以建立起不同传感器数据之间的准确对应关系。对于相机 - 激光雷达标定,要考虑两者在空间中的位置和角度关系,因为它们从不同的视角观察同一物体,只有精确标定才能将相机图像中的物体与激光雷达扫描到的点云准确匹配。激光雷达 - 惯导联合标定则需要结合两者的特性,将惯导所获取的车辆姿态信息与激光雷达的点云数据进行融合,使点云数据在车辆的坐标系中有准确的位置。

同时,传感器之间数据传输的频率特性分析也不容忽视。不同传感器的数据产生频率不同,例如,相机可能以一定的帧率捕捉图像,激光雷达有其自身的扫描频率,惯导系统的数据更新频率也有差异。这种频率差异可能导致数据在时间上的不一致,进而影响融合效果。为了解决这个问题,采用硬件时间同步与软件时间同步结合的方式。硬件时间同步通过在硬件层面上设置统一的时钟源或者同步信号,确保各个传感器在时间上的起始点是一致的。软件时间同步则在数据处理阶段,通过算法对不同频率的数据进行插值或者滤波等操作,进一步保证数据在时间上的对齐,从而实现传感器间数据的准确同步。

另外,图像畸变和激光雷达运动畸变问题需要深入研究。对于图像畸变,主要是由于相机镜头的光学特性引起的,这种畸变会导致图像中的物体形状和位置发生偏差。在处理图像数据之前,必须对这种畸变进行校正,常用的方法包括基于棋盘格等标定物的标定方法,通过采集标定物的图像,分析图像中特征点的实际位置和理想位置之间的差异,来计算出畸变参数,然后利用这些参数对图像进行校正。激光雷达运动畸变则是因为激光雷达在车辆运动过程中扫描产生的,车辆的运动会使扫描得到的点云在空间中的位置出现偏差。为了解决这个问题,需要结合车辆的运动信息,对激光雷达的扫描数据进行补偿,从而得到准确的点云数据。针对各个传感器的这些特性,还需要研究相应的预处理方法,以提高数据质量,为后续的信息融合和处理奠定基础。

最后,要给出多源异构信息融合路面感知系统软件架构。这个软件架构应该具备模块化、可扩展性和高效性等特点。它要能够接收和处理来自不同传感器的数据,包括相机图像数据、激光雷达点云数据和惯导姿态数据等。在软件架构中,要设置数据采集模块、预处理模块、标定模块、数据融合模块以及后续的应用模块等。数据采集模块负责从各个传感器获取原始数据,预处理模块对数据进行畸变校正、滤波等操作,标定模块完成传感器之间的标定工作,数据融合模块将不同传感器的数据进行融合,生成统一的路面感知信息,应用模块则可以根据这些感知信息进行诸如目标检测、高程地图重建等进一步的应用。

(2)多源异构路面目标三维检测方法

现有点云特征提取过程中存在信息损失问题,这对路面目标三维检测的准确性产生了负面影响。为了解决这个问题,设计了一种重要性稀疏卷积模块。这个模块的核心在于对输入特征进行重要性筛选。在传统的稀疏卷积过程中,容易出现特征塌陷的情况,这会导致几何特征描述能力弱化。而重要性稀疏卷积模块通过特定的算法和机制,能够识别出输入特征中对目标检测和描述更有价值的部分,保留这些重要特征,从而减轻特征塌陷的问题。基于这个重要性稀疏卷积模块,设计了一种激光雷达单信息源三维目标检测方法。这种方法利用了激光雷达点云数据的特点,通过对经过重要性筛选后的点云特征进行分析和处理,能够更准确地检测出三维空间中的目标物体。

在此基础上,进一步提出一种基于多源异构互补注意力机制的路面目标三维检测方法。在实际的路面环境中,图像和点云是两种不同类型但又相互补充的信息源。设计多源异构互补注意力机制的目的是高效挖掘图像与点云的相关性。通过这种机制,可以实现图像与点云异构信息的有效对齐。在实际的信息处理过程中,图像数据具有丰富的纹理和色彩信息,而点云数据则更侧重于物体的空间几何结构信息。多源异构互补注意力机制能够找到图像和点云中对应物体的关键特征点和区域,将它们准确地关联起来,从而提高点云与图像两类特征的融合程度。例如,当检测路面上的一个减速带时,图像中的纹理变化和颜色差异可以与激光雷达点云中减速带的几何形状信息相结合,更准确地确定减速带的位置、形状和尺寸。

此外,考虑到减速带、井盖这类舒适性敏感路面目标尺寸较小且不易检测的情况,设计了多尺度图像特征生成层。在实际的路面场景中,这些小尺寸目标可能在单一尺度的图像中难以被准确识别。多尺度图像特征生成层采用感受野模块实现多尺度特征高效构建。感受野模块能够模拟人类视觉系统中不同层次的视觉感知范围,通过调整感受野的大小,可以捕捉到不同尺度下的图像特征。然后,利用自适应空间特征融合实现深、浅层特征聚合的特征图生成。浅层特征通常包含图像的细节信息,如边缘、纹理等,而深层特征则更侧重于物体的语义信息。通过自适应空间特征融合,可以将深浅层特征有机地结合起来,生成包含丰富信息的特征图。这种特征图对于检测小尺寸的路面目标具有更好的效果。

最后,通过实车采集的数据建立数据集,并在这个数据集上完成验证。对比实验和消融实验是评估算法性能的重要手段。在对比实验中,将本文提出的算法与其他现有的目标检测算法进行比较,从检测精度、召回率、F1 值等多个指标来评估算法的优劣。消融实验则是对算法中的各个模块进行单独评估,分析每个模块对最终检测结果的贡献。实验结果表明,本文提出的算法具有较好的检测精度,能够准确地检测出路面上的各种目标物体,并且满足实时性要求,这对于实际的车辆行驶过程中的路面感知具有重要意义。

(3)基于多源异构信息的车辆位姿求解、高程估计及悬架控制算法

对于 MEMS 固态激光雷达获得的大量原始点云,为了提高处理效率和减少数据冗余,基于降维思想利用降采样的方式在保证原有点云几何特征的前提下减少点云数量。在降采样过程中,需要精心设计算法,避免因过度采样而丢失重要的几何信息。采用局部平滑度选取位姿求解所需的特征点,通过分析点云在局部区域内的平滑程度,可以找到那些对车辆位姿求解有重要意义的特征点。同时,结合 MEMS 激光雷达特性增加反射强度平滑度来缓解小视场角问题。由于 MEMS 激光雷达的视场角相对较小,可能会导致某些区域的点云数据缺失或者不准确,通过增加反射强度平滑度,可以提高在小视场角区域内点云数据的质量,从而更好地求解车辆位姿。最终通过对特征点建立约束方程并使特征残差最小化实现车辆位姿的实时求解。这种方法能够在车辆行驶过程中准确、快速地获取车辆的姿态信息,为后续的路面感知和控制提供重要依据。

在获得精确位姿的基础上,提出了一种基于栅格高度误差建模及运动不确定性的车前局部最优高程估计算法。首先,引入激光雷达噪声模型建立了基于最大似然估计路面栅格高度模型。激光雷达在扫描过程中会受到噪声的影响,这种噪声会导致测量得到的点云数据存在误差,进而影响高程估计的精度。通过建立噪声模型,可以对这种误差进行建模和分析,利用最大似然估计方法来估计路面栅格高度,提高高程估计的准确性。然后,利用一维卡尔曼滤波进行地图更新,卡尔曼滤波能够有效地融合新的测量数据和之前的估计结果,降低传感器噪声对建图精度的影响。在考虑车辆运动的情况下,推导了前后帧车辆位姿估计误差传播计算方法,有效减少运动不确定性对地图更新的影响。因为车辆在行驶过程中姿态是不断变化的,这种变化会带来运动不确定性,通过准确计算误差传播,可以更好地应对这种不确定性,提高高程估计的稳定性。同时,利用置信椭圆将水平方向上的运动不确定性进行加权计算,对车轮轨迹上的高程实现了精确高效估计。由于车辆在水平方向上的运动对高程估计有一定的影响,通过置信椭圆对这种运动不确定性进行加权,可以更合理地考虑水平运动对高程的影响,从而提高高程估计的精度。此外,由于高程的变化没有运动学关系描述,采取基于马氏距离的门策略来对落入栅格的测量值进行筛选,以应对高程急剧变化的场景。在某些特殊情况下,如路面突然出现大坑或者凸起时,高程会发生急剧变化,通过马氏距离门策略可以筛选出那些可能受到异常高程变化影响的测量值,提高算法的鲁棒性。最后,通过实车实验进行位姿估计算法验证和高程估计算法实车试验,结果表明本文提出的位姿估计算法可以较为精确地估计车辆位姿,高程估计算法也具有较高的精度和实时性,能够满足实际车辆行驶中对路面高程估计的要求。

最后,基于多源异构信息融合路面感知系统得到的高精度路面预瞄信息,面向乘坐舒适性提升,提出了一种基于预瞄信息控制权重自适应的主动悬架显式模型预测控制算法。首先,根据显式模型预测控制的特点,侧重于垂向动力学研究,建立考虑预瞄信息的四分之一车辆模型。在这个模型中,将高程信息作为增广状态引入悬架模型中。这样可以使悬架模型更好地考虑路面的起伏情况,从而更有效地控制车辆的垂向运动。其次,为了解决算法实时性问题,采用显式模型预测控制将原本二次规划在线优化转化为多参数二次规划离线优化。在传统的二次规划在线优化过程中,计算量较大,难以满足实时控制的要求。通过这种转化,在线求解过程仅需根据系统反馈及目标值进行查表,大大缩减了在线计算量,使算法能够在车辆行驶过程中实时运行。而后,为了充分利用各类预瞄信息,设计了基于预瞄信息的控制权重自适应切换策略。在不同的行驶工况下,路面的情况和车辆的状态都有所不同,根据预瞄信息自适应切换当前工况下最佳的控制权重参数,可以使悬架控制更加灵活和有效。并且提出一种基于增广拉格朗日乘子法的改进粒子群优化算法来进行各个工况下的权重寻优。在寻优过程中考虑了显式模型预测控制中的悬架物理约束,通过不断调整的乘子和罚因子,引导粒子向最优可行区域移动。这种方法可以在满足悬架物理限制的前提下,找到最佳的控制权重参数,提高悬架控制的性能。最后,通过虚拟环境测试对本文所提算法进行了对比验证,结果展示了本文提出算法的有效性,能够有效地提升车辆乘坐舒适性。

 

# 假设 camera_data 和 lidar_data 是模拟的相机和激光雷达原始数据

# 相机数据预处理函数
def preprocess_camera_data(camera_data):
    # 这里模拟图像畸变校正
    corrected_image = correct_distortion(camera_data)
    # 可以添加其他预处理步骤,如滤波等
    return corrected_image

# 激光雷达数据预处理函数
def preprocess_lidar_data(lidar_data):
    # 模拟去除离群点(简单示例)
    cleaned_lidar_data = remove_outliers(lidar_data)
    # 模拟运动畸变校正(简单示例)
    corrected_lidar_data = correct_motion_distortion(cleaned_lidar_data)
    return corrected_lidar_data

# 主函数,模拟数据预处理流程
def main():
    camera_data = get_camera_data()  # 获取模拟的相机数据
    lidar_data = get_lidar_data()  # 获取模拟的激光雷达数据

    preprocessed_camera_data = preprocess_camera_data(camera_data)
    preprocessed_lidar_data = preprocess_lidar_data(lidar_data)

    # 这里可以添加后续的数据融合或其他操作的模拟代码

if __name__ == "__main__":
    main()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值