✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅ 具体问题可以私信或扫描文章底部二维码。
(1) TV驱动桥系统结构特性分析与构型优选设计。为了实现轮间驱动转矩的任意转移分配,本研究提出了一种集中式布置的新型TV驱动桥构型方案。该方案不仅继承了传统集中式驱动系统成熟可靠、布置便捷的优点,还通过引入先进的机电耦合技术,实现了各轮转矩的独立控制和双向转移。首先,研究团队详细介绍了新型TV驱动桥系统的组成结构,包括电机执行器、齿轮系、控制系统等关键部件。通过对系统转速、转矩及功率流的耦合机理进行理论分析和仿真验证,研究团队揭示了系统内部能量传输和分配的基本规律。在此基础上,研究团队基于行星排速度图法,综合分析了36种典型的TV驱动桥系统拓扑结构特性,从电机参数匹配、机械设计合理性等多角度出发,筛选出最优的构型方案。最后,针对整车应用的需求,研究团队对所选TV驱动桥系统的关键参数进行了细致的匹配设计,确保系统在实际应用中能够发挥最佳性能。
(2) TV驱动桥系统动态特性建模分析。由于新型TV驱动桥系统涉及多个电机执行器和齿轮系,其动态特性复杂,可能对车辆的整体动力学性能产生重要影响。为此,研究团队采用键合图理论,绘制了TV驱动桥机械传动系统的键合图模型,并在此基础上推导了系统的动力学方程,确定了键合图模型中关键元件的参数。接着,研究团队建立了包含电机本体和控制系统的电机驱动系统动力学模型,该模型能够准确描述电机在不同工况下的动态响应特性。在对电机驱动系统模型进行简化后,研究团队进一步开发了一体化的TV驱动桥机电耦合系统动力学模型,该模型可以通用化地应用于36种拓扑结构。通过对系统的稳定性、动态响应性能以及鲁棒性进行仿真分析,研究团队发现,优化后的TV驱动桥系统在不同工况下均表现出优异的动态特性,能够有效提升车辆的操控稳定性和动力性。
(3) TV驱动桥系统动态特性控制策略研究。为了进一步改善新型TV驱动桥系统的动态特性,使其更好地满足整车横纵向动力学控制目标,研究团队提出了基于控制目标解耦的双电机协调控制架构。该架构通过分离控制目标,分别对左右两侧的电机进行独立控制,从而实现转矩的精确分配。为了开发基于被控对象模型的系统动态特性控制器,研究团队采用集中参数法对TV驱动桥系统的键合图模型进行了降维简化,减少了模型复杂度对控制器运算效率的影响。最后,研究团队开发了一种基于径向基神经网络滑模算法的自适应控制器,该控制器能够实时估计和补偿系统中的不确定干扰,有效提升了TV驱动桥系统的动态响应性能和鲁棒性。通过仿真验证,该控制策略在多种工况下均表现出色,能够显著提高系统的稳定性和响应速度。
(4) TV驱动桥系统整车应用转矩矢量控制策略开发。为了提升新型TV驱动桥系统的整车应用效果,研究团队对其转矩矢量控制策略进行了深入研究。首先,研究团队分析了TV驱动桥系统的整车集成控制架构,为控制策略的开发提供了软件架构基础。基于分层控制的思想,研究团队建立了以提升车辆操纵稳定性为控制目标的TV驱动桥系统转矩矢量控制策略。在上层控制中,研究团队设计了基于超螺旋二阶滑模控制算法的附加横摆力偶矩控制器,该控制器能够有效维持车辆在转弯过程中的横向稳定性。在下层控制中,研究团队建立了基于模糊推理的路面附着系数识别驱动防滑控制器,实现了车辆转弯过程中横纵向稳定性的协同控制。此外,研究团队还探讨了轮间转矩矢量对车辆转弯能耗的影响机理,提出了一种基于相平面稳定域划分的实时在线优化控制策略,该策略能够在保证车辆操纵稳定性的前提下,显著降低转弯能耗,提升车辆的经济性。通过联合仿真平台的验证,所提出的控制策略在多种典型工况下均表现出良好的性能。
(5) TV驱动桥系统功能样机试制与控制策略硬件在环试验。为了验证所开发的控制策略的工程实用性,研究团队首先加工试制了TV驱动桥系统功能样机,并自主搭建了硬件在环试验台架。在该试验台上,研究团队分别对TV驱动桥系统的动态特性、系统动态特性控制策略以及TV驱动桥系统转矩矢量控制策略进行了详细的硬件在环试验。试验结果表明,优化后的TV驱动桥系统在动态特性建模分析方面的结论是正确的,所开发的控制策略在实际应用中表现出色,能够有效提升车辆的操控稳定性和动力性。这些研究成果不仅为TV驱动技术在节能与新能源汽车上的推广与应用提供了理论支持,还为电动汽车先进驱动系统的创新技术研发提供了重要的工程实践经验。
import numpy as np
from sklearn.neural_network import MLPRegressor
from scipy.signal import savgol_filter
class TVDriveBridgeController:
def __init__(self, num_inputs, num_outputs, hidden_layer_sizes=(10,), max_iter=500):
"""
初始化控制器
:param num_inputs: 输入变量数量
:param num_outputs: 输出变量数量
:param hidden_layer_sizes: 隐层神经元数量
:param max_iter: 最大迭代次数
"""
self.num_inputs = num_inputs
self.num_outputs = num_outputs
self.nn_controller = MLPRegressor(hidden_layer_sizes=hidden_layer_sizes, max_iter=max_iter)
self.error_history = []
def train(self, X_train, y_train):
"""
训练神经网络控制器
:param X_train: 训练输入数据
:param y_train: 训练输出数据
"""
self.nn_controller.fit(X_train, y_train)
def predict(self, X):
"""
预测控制器输出
:param X: 输入数据
:return: 控制器输出
"""
return self.nn_controller.predict(X)
def update_error(self, error):
"""
更新误差历史记录
:param error: 当前误差
"""
self.error_history.append(error)
def smooth_error(self, window_length=5, polyorder=2):
"""
对误差进行平滑处理
:param window_length: 平滑窗口长度
:param polyorder: 多项式阶数
:return: 平滑后的误差
"""
if len(self.error_history) < window_length:
return self.error_history
smoothed_error = savgol_filter(self.error_history, window_length, polyorder)
return smoothed_error
def control(self, current_state, desired_state):
"""
实现基于径向基神经网络滑模算法的控制
:param current_state: 当前状态
:param desired_state: 目标状态
:return: 控制信号
"""
error = desired_state - current_state
self.update_error(error)
smoothed_error = self.smooth_error()
# 计算控制信号
control_signal = self.predict([smoothed_error])
# 滑模控制部分
sliding_surface = np.sum(smoothed_error)
switching_gain = 0.5 # 切换增益
control_signal += switching_gain * np.sign(sliding_surface)
return control_signal
# 示例数据
X_train = np.array([[1, 2], [3, 4], [5, 6]])
y_train = np.array([[0.1], [0.2], [0.3]])
# 创建控制器实例
controller = TVDriveBridgeController(num_inputs=2, num_outputs=1)
# 训练控制器
controller.train(X_train, y_train)
# 测试控制功能
current_state = np.array([1, 2])
desired_state = np.array([2, 3])
control_signal = controller.control(current_state, desired_state)
print("Control Signal:", control_signal)