动车组设备可靠性非完美维修与机会维修的非合作博弈分析【附数据】

博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。


(1)动车组设备等周期预防性维修计划

我国高速铁路发展迅速,动车组保有量庞大,保障其安全可靠运行至关重要。当前我国动车组采用定周期计划修体制,但基于可靠性的预防性维修策略在生产设备维修领域更具科学性。基于我国动车组现行等周期维修机制,我们研究两级维修机制下的维修间隔与维修次数确定方法。在仅有单一非完美维修方式时,重点关注动车组设备等周期预防性维修计划的决策。

在此过程中,以维修成本率最低为目标,这一目标贯穿整个维修计划决策。因为维修成本是铁路运营中不可忽视的部分,过高的成本会增加运营负担,而过低的成本可能导致维修不足,影响安全。维修里程间隔和维修次数是关键决策变量,它们相互影响。我们需要深入分析动车组设备在一个寿命周期内的运行特性,包括不同运行里程下设备的磨损情况、故障出现的概率趋势等。通过大量的数据收集和分析,构建模型来优化维修计划。例如,详细记录不同线路、不同运行条件下动车组设备的故障数据,结合设备的设计寿命和维修历史,确定合理的成本计算方式。这样优化得出的维修计划,能使维修成本率达到最优,同时确保维修里程间隔和维修次数是最合理的,既能保障动车组安全运行,又能有效控制成本。

(2)两级非完美维修策略与变周期预防性维修计划

等周期预防性维修策略存在一定局限性,它往往忽略了设备性能随运行周期增加而降低这一客观规律。为了克服这一问题,我们研究基于可靠性的动车组设备两级非完美维修策略,此时考虑两种非完美维修方式,来决策变周期预防性维修计划。

在这个过程中,要充分考虑故障率递增因子和役龄递减因子的特点。故障率递增因子反映了随着设备使用时间增长和运行里程增加,故障发生可能性逐渐增大的趋势。役龄递减因子则体现了设备性能随时间推移而下降的情况。通过混合式故障率演化规则来描述动车组设备的故障率变化,这种规则能更准确地模拟实际情况。对于动车组设备采用两级非完美维修策略,每一次维修具体方式的决策依据是效费比分析。通过对比不同维修方式下的成本投入和设备性能提升效果,选择最经济有效的维修方式。例如,在分析中要考虑维修所需的零部件成本、人工成本、维修时间对运营的影响等因素,以及维修后设备能够正常运行的时长、性能恢复程度等。这样可以提高动车组设备维修管理的效费比经济性,使维修工作更加科学、合理,在保障设备可靠性的同时,降低不必要的成本支出,提高整个维修管理工作的效益。

(3)基于两级非完美维修机制的机会维修策略

为了进一步提高动车组设备的维修经济性,我们研究基于两级非完美维修机制的动车组设备机会维修策略。在此机制下,对机会维修内涵进行了拓展,从仅有的机会提前延伸至机会提前和机会延后。这种拓展丰富了机会维修的内涵,使其更具灵活性和实用性。

在实际的动车组设备维修场景中,两级非完美维修机制下,低级别维修措施与其他设备的维修情况相互关联。当其他设备进行同级别或高级别维修时,动车组设备的低级别维修可以提前执行。这是因为在设备系统中,同时进行相关设备的维修可以减少整体的停机次数,提高维修效率。同时,低级别维修也可能因高级别维修措施而延后执行,这种灵活性可以更好地适应整个动车组多设备系统的维修安排。通过这样的方式,可以进一步减少动车组的停机次数。停机次数的减少意味着运营效率的提高,减少了因维修导致的运营中断对旅客运输的影响。同时,也能降低动车组多设备系统维修总成本。因为合理安排维修顺序和时间,可以避免不必要的维修资源浪费,如减少维修人员的等待时间、降低零部件的库存成本等,从而实现维修经济性的提升。


# 定义动车组设备类
class EMU_Equipment:
    def __init__(self, name, initial_condition):
        self.name = name
        self.condition = initial_condition
        self.maintenance_history = []

# 模拟维修操作函数
def perform_maintenance(equipment, maintenance_type):
    # 根据维修类型模拟对设备条件的影响
    if maintenance_type == 'type1':
        equipment.condition += 20  # 假设维修后设备性能提升程度
    elif maintenance_type == 'type2':
        equipment.condition += 30
    equipment.maintenance_history.append(maintenance_type)

# 评估维修策略的成本和效果函数(简单示例)
def evaluate_strategy(equipment, maintenance_plan, cost_data):
    total_cost = 0
    for i in range(len(maintenance_plan)):
        maintenance_type = maintenance_plan[i]
        total_cost += cost_data[maintenance_type]
        perform_maintenance(equipment, maintenance_type)
    return total_cost, equipment.condition

# 示例数据
equipment1 = EMU_Equipment('Motor', 80)  # 初始设备状态为80(假设值)
maintenance_plan_example = ['type1', 'type2', 'type1']
cost_data_example = {'type1': 100, 'type2': 150}

# 运行评估
cost_result, condition_result = evaluate_strategy(equipment1, maintenance_plan_example, cost_data_example)
print("Total cost:", cost_result)
print("Final equipment condition:", condition_result)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值