增程式电动汽车能量管理策略的多目标优化与参数匹配研究【附数据】

博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。


(1)动力系统参数匹配与优化 针对用户需求,建立整车质量屋模型,运用层次分析法、熵值法和灰色关联法确定性能指标权重。结合正交试验结果,进行技术参数灵敏度分析、极差和方差分析,探究性能指标与技术参数之间的耦合规律。基于粒子群算法对增程器系统功率、驱动电机功率、动力电池容量、电池单体个数、传动系统总减速比等参数进行优化分析与决策。在AVL/Cruise和Matlab/Simulink软件环境下搭建增程式电动汽车车型动力及控制系统联合仿真模型,用于后续能量管理策略的开发工作

(2)APU系统工作模式/区域优化设计 探究多目标视角下APU系统不同工作模式对系统能耗、排放和电池容量衰减率的影响。基于动态规划(DP)算法得到APU系统能耗-排放特性最优工作曲线,考虑油-电转换效率、综合排放指标和电池容量衰减率定义综合性能评价指数Icom_ovp。在多目标优化问题研究框架下,基于BB-MOPSO算法和权重系数矩阵,以APU系统工作点个数和此工作点所在转速下的功率范围、工作点间切换门限参数的类型及大小为优化对象,开展优化与决策分析。研究发现,当APU系统工作点个数Ncsop在1+line、2、3和4这四种工作模式下,在能耗、排放和电池健康状态三个方面具有较好性能,Icom_ovp指标较高;当Ncsop≥5后,能耗、排放和电池健康状态三个方面性能变差,Icom_ovp指标下降。此外,基于功率切换型策略相比基于车速切换型策略,可以在维持相同能耗和排放水平的前提下,减少动力电池充/放电电流大小,降低充/放电频率,提高电池使用寿命

(3)电量缓降型近似最优能量管理策略 针对增程构型提出了APU系统最优功率偏离度的概念,此参数为电量缓降型近似最优能量管理策略的核心参数。基于预测与参数辨识的工况类型预测与划分方法,降低了算法复杂程度,解决了出行特征信息识别和应用过程中实时性与准确性难以兼顾和量化的难题。在此基础上,设计可实时优化的电量缓降型近似最优能量管理策略,此策略无须预测出准确的车速序列信息,可以使动力电池SoC沿着目标轨迹下降的同时,APU系统更多地工作在最优工作点/区域内,从而实现APU系统和电池系统协同工作的近似最优能量分配

(4)基于出行特征的智能模式切换型能量管理策略 设计基于出行特征的智能模式切换型能量管理策略,基于变尺度窗口的参数识别算法实时获取工况车速序列信息,基于模糊算法实现驾驶风格与路况特征的在线识别。智能模式切换包括参考续驶里程和电池SoC状态,APU系统与电池系统协同工作状态的切换,即CD-EV+CS-Blend模式和CD-Blend模式间的切换;以及参考实时工况车速序列信息,APU系统工作模式/区域在多点模式、点-线型模式间的切换。结果表明:基于出行特征的智能模式切换型策略可按照既定规则完成模式切换功能,实现短途“先电后油”、长途“油电协同”,以及实时优化的APU系统工作模式切换控制,提升系统包括能耗、排放和电池健康状态的综合控制性能

(5)动力系统台架试验验证 搭建动力系统台架,对研究设计的能量管理策略中各项功能的可行性和有效性进行台架试验验证。验证的策略功能包括:驾驶风格和路况特征的识别算法功能、APU系统启停功能、稳态发电功能、动态模式切换功能、智能模式切换功能等。试验结果显示,在仿真和试验条件下的策略性能表现基本一致,控制效果良好

 

% 清空环境变量,关闭所有图形界面,加载数据
clc; clear; close all; load CWTVC.mat;

% 定义系统参数
N = 200; % 假设的工况数量
P_eng_max = 70; % 发动机最大输出功率 kW
P_batt_max = 80; % 电池最大输出功率 kW
Q_batt = 18.3; % 电池容量 kWh
Q_batt1 = 18.3 * 3600; % 电池容量 kJ
SOC_min = 0.4; % 最小SOC
SOC_max = 0.52; % 最大SOC
delt_SOC = 0.00005; % SOC变化步长
delt_Pbatt = delt_SOC * Q_batt * 3600; % 功率变化步长
max_grid_trans_num = floor(P_batt_max / delt_Pbatt); % 最大充放电次数

% 初始化SOC
SOC_init = 0.5;

% 模拟能量管理策略
for i = 1:N
    % 假设的功率需求
    P_dem = Pdemand / 1000.0;
    
    % 根据需求和SOC调整APU和电池的输出
    if SOC_init > SOC_min
        % 使用电池供电
        P_batt_output = min(P_dem, P_batt_max);
        P_eng_output = 0;
    else
        % 使用发动机供电
        P_eng_output = min(P_dem, P_eng_max);
        P_batt_output = 0;
    end
    
    % 更新SOC
    SOC_init = SOC_init - (P_batt_output - P_eng_output) / Q_batt1;
    SOC_init = max(SOC_min, min(SOC_init, SOC_max));
end

% 显示最终SOC
disp(['Final SOC: ', num2str(SOC_init)]);

### 程式混合动力汽车能量管理策略中的动态规划算法实现 #### 动态规划简介 动态规划(Dynamic Programming, DP)是一种用于解决复杂优化问题的技术,尤其适用于具有重叠子问题和最优子结构性质的问题。在程式电动汽车(Range Extended Electric Vehicle, REEV)的能量管理系统中,DP被用来寻找最佳的操作模式序列,在满足驾驶需求的同时最小化燃料消耗或其他目标函数[^1]。 #### 应用场景描述 对于REEV而言,其核心在于如何协调电动机内燃机之间的功率分配以达到最理想的能耗效率。具体来说,就是要决定何时仅依靠电池供电驱动电机工作;又或者当电量不足时启动发电机补充电能并辅助推进车辆前进。这种决策过程涉及到对未来行驶工况的预见以及当前状态变量如剩余电量(SOC)水平等因素的影响评估。 #### 数学建模 为了构建适合于采用DP求解的能量管理模型,通常会定义如下几个要素: - **状态空间**:包括但不限于时间步长t下的SOC值s(t),即`S={s(0), s(1)...}`; - **动作集合A(s)** :针对每一个可能的状态s所允许采取的动作a∈A(s),比如调整ICE输出功率大小p_ice(a); - **转移概率P[s'|s,a]** : 给定状态下执行特定行动后转移到下一个时刻新状态的概率分布; - **即时奖励/代价r(s,a,s')**: 衡量从某一时段到下一时间段之间因做出某种选择而产生的收益或损失. 在此基础上形成的目标是最小化整个行程期间累积起来的成本C: \[ C=\sum_{k=0}^{N}\gamma ^kr(s_k,a_k)\] 其中γ表示折扣因子,用于平衡短期利益同长远效益间的关系。 #### MATLAB代码示例 下面给出一段简单的MATLAB伪代码片段展示怎样利用DP框架来计算给定路线条件下理想化的操作方案: ```matlab function [optimal_policy]=dp_energy_management(initial_soc,distance_profile,fuel_cost_function) % 初始化参数... V=zeros(length(states));% 创建价值表 policy = cell(size(V)); % 存储对应每种情况的最佳行为 for t=T:-1:1 for i=1:length(states) current_state = states(i); best_action=[]; min_value=Inf; for j=1:length(actions(current_state)) action_j = actions{current_state}(j); next_states_probs=get_next_states_probabilities(action_j,current_state,t); expected_future_rewards=sum(arrayfun(@(next_s_p)(next_s_p.value*V(next_s_p.index)),next_states_probs)); immediate_reward=-fuel_cost_function(action_j);% 计算立即获得的好处 total_estimated_reward=immediate_reward+expected_future_rewards;% 预估总回报 if(total_estimated_reward<min_value) min_value=total_estimated_reward; best_action=action_j; end end V(i)=min_value; policy{i}=best_action; end end end ``` 此段代码展示了基本思路,实际应用还需考虑更多细节因素,例如不同路段的速度变化、交通状况等外部环境影响。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值