汽车转向臂生产线机器人端拾器设计与路径优化研究【附数据】

博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

✅论文数据下载:工业工程毕业论文【数据集】

✅题目与创新点推荐:工业工业毕业论文【题目推荐】


一、端拾器设计

(一)端拾器与工件关系分析及磁力计算

在汽车控制臂柔性生产线中,搬运机器人的端拾器需要精确地抓取和搬运工件。首先要对机械臂端拾器与工件之间的关系进行深入分析计算,以确定所需的磁力大小。通过考虑工件的质量、形状、表面材质以及搬运过程中的加速度等因素,运用力学原理建立相应的数学模型。例如,根据牛顿第二定律,计算出在不同工况下确保工件稳定抓取所需的最小磁力。在计算过程中,要充分考虑到可能出现的各种干扰力,如惯性力、摩擦力等,以保证磁力的冗余设计,防止工件在搬运过程中脱落。

(二)端拾器材料选用与尺寸确定

选用合适的端拾器材料对于其性能至关重要。当前,钕铁硼材料因其具有最强的磁力特性而被选用。在确定了材料之后,利用相关公式求解端拾器的尺寸。这需要综合考虑磁力大小、材料的磁性能参数以及机械结构的强度和稳定性等多方面因素。例如,根据材料的磁化曲线和所需磁力,通过电磁学公式计算出磁体的体积和形状尺寸。同时,依据基尔霍夫定律求解出线圈的匝数与半径等参数。线圈匝数和半径的确定会影响到电磁力的大小和分布,通过精确计算和优化,可以使端拾器在满足磁力要求的同时,减少能量损耗和发热现象。

(三)端拾器建模与仿真验证

利用 Solidworks 软件对设计好的新型端拾器进行三维建模,构建出端拾器的精确几何形状和结构。然后将模型导入到电磁学仿真软件 Maxwell 中进行验证。在 Maxwell 中,设置好材料属性、边界条件以及激励源等参数,模拟端拾器在实际工作中的电磁特性。通过仿真,可以得到端拾器的磁场分布、磁力大小随距离和位置的变化曲线等结果。将这些仿真结果与理论计算值进行对比分析,验证端拾器设计的准确性和合理性。如果发现仿真结果与理论值存在偏差,则需要对设计参数进行调整和优化,直到满足设计要求为止。例如,若仿真发现某一区域的磁力不足,可以通过增加磁体厚度或调整线圈匝数等方式进行改进。

二、轨迹优化

(一)汽车控制臂冲压线分析与轨迹规划方法介绍

对整条汽车控制臂冲压线进行全面分析,了解其各个环节的设备组成和生产工艺。冲压线通常包括冲压机、送料装置、搬运机器人等设备,各设备之间需要协同工作,以确保生产的高效进行。介绍机械臂在关节空间中常用的轨迹规划方法,如 3 次多项式插值、5 次多项式插值和 3 - 5 - 3 插值方法。3 次多项式插值虽然计算相对简单,但加速度变化幅度较大,容易引起机械臂的振动,这对于高精度的搬运作业是不利的。5 次多项式插值能够实现更平滑的轨迹,但计算量较大,对控制系统的要求较高。而 3 - 5 - 3 插值方法则兼顾了两种单一插值方法的优点,它在起始和结束阶段采用 3 次多项式插值,中间阶段采用 5 次多项式插值,既能保证轨迹的平滑性,又能在一定程度上减少计算量。在此基础上,提出基于 3 - 5 - 3 多项式插值轨迹进行时间优化的目标和优化流程。优化目标主要是在满足机械臂运动学约束和生产工艺要求的前提下,尽可能缩短机械臂的运动时间,提高生产效率。优化流程包括确定优化变量、建立目标函数、设置约束条件以及选择合适的优化算法等步骤。

(二)GP - 180 型机器人运动学建模与分析

基于标准 DH 法建立 GP - 180 型机器人的运动学模型。通过对机器人的结构进行分析,确定各个关节的坐标系和参数,建立相邻关节之间的变换矩阵,进而推导出机器人的正运动学方程和逆运动学方程。正运动学方程用于根据关节变量计算末端执行器的位置和姿态,逆运动学方程则用于根据给定的末端执行器位置和姿态求解关节变量。利用 Matlab 中的 Robotic Tools 对机器人的正逆运动学进行仿真。在仿真过程中,输入不同的关节变量值,验证正运动学方程的正确性;同时,给定末端执行器的目标位置和姿态,求解关节变量,并与理论值进行对比,验证逆运动学方程的准确性。基于蒙特卡洛法对机械臂的工作空间进行求解,通过随机生成大量的关节变量组合,计算对应的末端执行器位置,得到机械臂的工作空间云点图。工作空间云点图能够直观地展示机械臂能够到达的所有位置范围,为轨迹规划和任务分配提供重要依据。

(三)机械臂轨迹插值模拟仿真与分析

根据机械臂示教得到的关节空间坐标,利用不同的插值方法对机械臂轨迹进行插值模拟仿真。在仿真过程中,分别采用 3 次多项式插值、5 次多项式插值和 3 - 5 - 3 插值方法,计算出机械臂在不同插值方法下的位移、速度与加速度曲线。通过对这些曲线的分析,可以直观地了解不同插值方法对机械臂运动特性的影响。例如,观察 3 次多项式插值的加速度曲线,可以发现其在起始和结束阶段存在较大的加速度突变,这会导致机械臂产生较大的冲击力和振动;而 5 次多项式插值的加速度曲线相对平滑,但计算过程较为复杂,速度曲线的变化也相对较慢。3 - 5 - 3 插值方法的曲线则在两者之间取得了较好的平衡,既具有一定的平滑性,又能保证较快的运动速度。

(四)基于麻雀算法的轨迹优化与仿真验证

介绍麻雀算法的相关作用原理,麻雀算法是一种新型的智能优化算法,它模拟麻雀群体的觅食和逃避行为,具有搜索速度快、收敛精度高的特点。结合本文的研究内容,设置初始种群数、最大迭代次数、搜索范围等相关参数。提出一种基于麻雀算法的时间最优三五三多项式插值的轨迹规划方法,将 3 - 5 - 3 多项式插值的参数作为优化变量,以机械臂的运动时间作为目标函数,同时考虑关节角度限制、速度限制、加速度限制等约束条件,利用麻雀算法进行迭代优化。在 Matlab 中进行仿真,通过多次迭代计算,得到优化后的轨迹参数。对比优化前后的运动曲线,可以发现优化后的运动曲线在平滑性上有了明显的提升,加速度的突变得到了有效抑制,同时运动时间耗费相较于单一的 3 - 5 - 3 插值也有较大幅度的减少。这验证了该种优化算法的有效性,该优化方法能够有效地减少机械臂的工作时间,提高生产效率,对自动化生产具有一定的参考价值。

 

% 机械臂运动学建模相关函数
function T = DHTransform(theta, d, a, alpha)
    % 标准 DH 变换矩阵计算
    T = [cos(theta), -sin(theta)*cos(alpha), sin(theta)*sin(alpha), a*cos(theta);
         sin(theta), cos(theta)*cos(alpha), -cos(theta)*sin(alpha), a*sin(theta);
         0, sin(alpha), cos(alpha), d;
         0, 0, 0, 1];
end

% 3 - 5 - 3 多项式插值函数
function [q, qd, qdd] = CubicQuinticCubicInterpolation(t, t0, t1, q0, q1, v0, v1)
    % 计算 3 - 5 - 3 插值的位置、速度和加速度
    if t <= t0
        q = q0;
        qd = v0;
        qdd = 0;
    elseif t <= (t0 + t1)/2
        % 3 次多项式插值部分
        a0 = q0;
        a1 = v0;
        a2 = 3*(q1 - q0)/t1^2 - 2*v0/t1 - v1/t1;
        a3 = -2*(q1 - q0)/t1^3 + (v0 + v1)/t1^2;
        q = a0 + a1*(t - t0) + a2*(t - t0)^2 + a3*(t - t0)^3;
        qd = a1 + 2*a2*(t - t0) + 3*a3*(t - t0)^2;
        qdd = 2*a2 + 6*a3*(t - t0);
    elseif t <= t1
        % 5 次多项式插值部分
        b0 = q0;
        b1 = v0;
        b2 = 3*(q1 - q0)/t1^2 - 2*v0/t1 - v1/t1;
        b3 = -2*(q1 - q0)/t1^3 + (v0 + v1)/t1^2;
        b4 = 10*(q1 - q0)/t1^4 - 6*(v0 + v1)/t1^3;
        b5 = -15*(q1 - q0)/t1^5 + 8*(v0 + v1)/t1^4;
        q = b0 + b1*(t - t0) + b2*(t - t0)^2 + b3*(t - t0)^3 + b4*(t - t0)^4 + b5*(t - t0)^5;
        qd = b1 + 2*b2*(t - t0) + 3*b3*(t - t0)^2 + 4*b4*(t - t0)^3 + 5*b5*(t - t0)^4;
        qdd = 2*b2 + 6*b3*(t - t0) + 12*b4*(t - t0)^2 + 20*b5*(t - t0)^3;
    else
        q = q1;
        qd = v1;
        qdd = 0;
    end
end

% 麻雀算法相关函数
function [BestPos,BestFit] = SparrowSearchAlgorithm(pop,Max_iter,lb,ub,dim,fobj)
    % 麻雀算法主函数
    % pop: 种群数量
    % Max_iter: 最大迭代次数
    % lb, ub: 变量上下界
    % dim: 变量维度
    % fobj: 目标函数

    % 初始化种群
    Positions = initial(pop,dim,ub,lb);
    Fitness = zeros(1,pop);
    for i = 1:pop
        Fitness(i) = fobj(Positions(:,i));
    end

    [BestFit,BestInd] = min(Fitness);
    BestPos = Positions(:,BestInd);

    % 迭代优化
    for iter = 1:Max_iter
        % 发现者更新
        [Positions,Fitness] = DiscovererUpdate(Positions,Fitness,BestPos,dim,ub,lb);
        [BestFit,BestInd] = min(Fitness);
        BestPos = Positions(:,BestInd);

        % 加入者更新
        [Positions,Fitness] = JoinerUpdate(Positions,Fitness,BestPos,dim,ub,lb);
        [BestFit,BestInd] = min(Fitness);
        BestPos = Positions(:,BestInd);

        % 警戒者更新
        [Positions,Fitness] = SentinelUpdate(Positions,Fitness,BestPos,dim,ub,lb);
        [BestFit,BestInd] = min(Fitness);
        BestPos = Positions(:,BestInd);
    end
end

% 目标函数(以机械臂运动时间为例)
function time = ObjectiveFunction(x)
    % x 为 3 - 5 - 3 多项式插值的相关参数
    % 根据参数计算机械臂轨迹并返回运动时间
    % 这里省略具体的轨迹计算和时间计算过程,仅作示意
    time =...; 
end

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值