✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅ 具体问题可以私信或扫描文章底部二维码。
1. 动态多目标优化算法的研究背景与挑战
动态多目标优化问题(DMOPs)是指那些目标函数不仅与决策变量有关,而且还会随着时间(环境)动态变化的优化问题。这类问题广泛存在于实际生活中,不仅包含多个相互冲突的目标,而且包含时变的决策变量、环境参数、目标函数等不确定的动态因素。传统进化算法在求解动态多目标问题时,当环境变化后,面临种群无法快速收敛、种群多样性、分布性退化等问题。如果直接应用传统进化算法求解动态多目标优化问题,难以达到新问题的最优解。因此,需要有针对性的动态响应机制,以适应环境的变化并保持种群的多样性和分布性
。
2. 基于特征信息预测的动态多目标优化算法
针对传统动态多目标优化预测精度不高的问题,提出了基于特征信息预测的动态多目标优化算法。当环境发生变化后,从当前时刻的目标空间和新时刻的优化函数中选取特征信息,建立联合分布适应的预测模型,确定环境变化前后的映射函数,以识别环境变化后解集的分布,并通过内点法获得下一时刻决策空间的特征信息。基于该特征信息构成的种群边界,随机生成新个体,提高种群多样性,提升种群预测精度。通过在多个测试函数上与四种经典算法比较,验证所提方法的性能。仿真结果表明,所提方法可以在剧烈变化的动态环境中快速追踪到种群前沿
。
3. 基于多区域协同的动态多目标优化算法
针对具有复杂前沿特征的动态多目标优化问题,提出了一种基于多区域协同的动态多目标优化算法。该算法主要包含多区域预测策略和多区域多样性维持策略两部分。在检测到环境变化时,首先根据环境变化严重程度自适应地确定子区域的个数,增强子区域对动态问题的适应性。通过不同子区域中的历史中心点构建差分模型,判断最优解的移动趋势,估计新时刻中心点的位置,生成适应前沿的新个体。其次,在预测的最优解新时刻可能存在的子区域内随机生成新个体,促进种群多样性,这两部分解集构成新环境下的初始种群。将所提方法在多个测试函数上进行测试,仿真结果表明,所提算法能够快速追踪复杂前沿的变化,并有效地预测最优解集的位置
。
4. 双空间环境变化检测与响应的动态多目标优化算法
针对具有多个凹凸拐点前沿的复杂动态多目标优化问题,提出了一种双空间环境变化检测与响应的动态多目标优化算法。当检测到环境变化时,通过凹凸拐点识别及统计学方法,分别判断目标空间及决策空间的变化严重程度。对于目标空间不同程度的变化,以种群前沿形状信息为驱动,判断种群变化趋势,自适应地引导种群进化。对于决策空间不同程度的变化,以种群变量信息为指导,通过长短期自学习构建预测模型,生成更适应新环境的新个体。在多个测试函数上的仿真实验表明,所提算法可以有效检测目标空间及决策空间的变化强度,准确预测具有多个凹凸拐点前沿特征的动态问题
。
5. 决策空间信息驱动的动态多目标优化算法
针对目标个数变化的动态多目标优化问题中收敛性和多样性难以平衡的问题,提出了一种决策空间信息驱动的动态多目标优化算法。当问题的目标个数变化后,根据目标个数的增减,选择适应目标空间变化的优秀代表个体,通过自组织映射学习其流形,引导种群生成新的最优解,促进种群收敛。同时,根据个体中不同决策变量的贡献度,将其按收敛性和多样性分类,对不同类型的变量采取针对性的进化操作,提升种群多样性。将所提算法应用于多个测试函数中比较分析,仿真结果表明,所提方法可以有效平衡目标个数变化问题的收敛性和多样性
。
6. 基于多空间信息联合引导的动态多目标优化算法
针对目标个数变化和时变目标函数同时存在的动态多目标优化问题,提出了一种基于多空间信息联合引导的动态多目标优化算法。当环境变化后,首先,根据不同时刻的决策空间信息,通过测地线流核的方法建立不同时刻的映射关系,基于历史解集和空间信息生成新环境的初始个体,准确识别变化后的最优解。其次,从目标空间中选择多样性良好的代表个体,在这些个体的决策空间附近的多个维度上采样获得新解,提升种群多样性。对具有时变目标函数及目标个数的多个测试函数进行仿真实验,结果表明所提算法在目标个数和时变目标函数同时存在的测试问题的性能明显优于对比算法
% 初始化参数
popSize = 100; % 种群大小
maxGen = 200; % 最大迭代次数
dim = 5; % 决策变量的维度
numObj = 2; % 目标函数的数量
% 随机初始化种群
population = rand(popSize, dim);
% 定义动态多目标优化问题的目标函数
% 此处以两个动态目标函数为例,实际应用中需替换为具体的目标函数
objFun1 = @(x) (x(1)-1)^2 + (x(2)-2)^2;
objFun2 = @(x) (x(1)-2)^2 + (x(2)-1)^2;
% 进化算法主循环
for gen = 1:maxGen
% 评估种群
fitness = zeros(popSize, numObj);
for i = 1:popSize
fitness(i, 1) = objFun1(population(i, :));
fitness(i, 2) = objFun2(population(i, :));
end
% 环境变化检测
% 此处省略环境变化检测的具体实现,实际应用中需根据问题特性进行设计
% 如果检测到环境变化,则更新目标函数或种群状态
% 选择操作(例如:基于非支配排序的选择)
% 此处省略选择操作的具体实现,实际应用中需根据问题特性进行设计
% 交叉和变异操作
for i = 1:popSize
% 随机选择两个父代
parent1 = population(randi([1, popSize]), :);
parent2 = population(randi([1, popSize]), :);
% 交叉操作
child = (parent1 + parent2) / 2;
% 变异操作
mutation = 0.1 * randn(1, dim);
child = child + mutation;
% 环境适应性评估
% 此处省略环境适应性评估的具体实现,实际应用中需根据问题特性进行设计
% 更新种群
if isBetter(child, population(i, :), fitness(i, :), fitness)
population(i, :) = child;
end
end
end
% 输出最优解
[~, bestIdx] = min(fitness(:, 1));
optimalSolution = population(bestIdx, :);
disp('Optimal Solution:');
disp(optimalSolution);
% 辅助函数:判断一个解是否优于另一个解
function better = isBetter(x1, x2, f1, f2)
better = all(f1 <= f2);
end