机器人视觉初级系列(1) - 介绍篇

本文是机器人视觉初级系列的第一篇,旨在帮助初学者快速上手。主要内容包括:设置Linux开发环境,使用Opencv进行图像处理,如边缘检测、特征提取,以及通过PCA和HOG进行人脸识别和行人检测。此外,还涉及SVM、神经网络等人工智能基础知识的学习。
摘要由CSDN通过智能技术生成

如何学习机器视觉,机器视觉如何入门。

写在前面的话:

刚毕业到公司做人工智能、机器视觉小组,项目启动没多久属于初期研发阶段。作为一个年轻的BOY进入机器视觉这一行,水很深。

学习机器视觉、人工智能前期需要学习图像基本知识,框架有Opencv,数学有CNN、Convolution、SVM、K-Means等知识。为了能够方便公司对后来的新人更快地上手,在这里总结机器视觉、人工智能的前期知识。

学习目标:

  • 1、熟悉Linux开发环境,熟练运用开发工具
  • 2、个人学习机器视觉为主,能独立进行模块开发

开发环境搭建:

    1. Linux操作系统:安装LINUX、使用LINUX常用命令、熟悉LINUX下常用软件、配置:
      • 安装LINUX
      • 使用LINUX常用命令
      • 熟悉LINUX下常用软件、配置
      • 熟悉ftp,telnet,ssh,修改网络网卡配置
  • 2、linux系统知识(如果你这都不会,我就只能哎啦)(1天)

开发环境

开发工具Eclipse: http://www.eclipse.org/downloads/
(笔者本人用Macbook air的Xcode进行C++开发,最新手痒升级了个pro,终于摆脱内存每次开发都占用53%的僵局)


学习计划

学习任务1 (2天)

目的:准备工作

任务1:

  • 安装Linux操作系统,并在Linux上安装开发软件。
  • 熟悉Linux基本命令。
  • 在Linux上安装交叉编译工具。
  • 熟悉数字图像处理
  • 学习C/C++编程规范,一定要看Google的C++编程规范,一个字“棒”

任务2:

  • c++编写一个文件夹管理类:
    • 可以递归遍历指定路径的所有文件;
    • 编写makefile文件进行编译;
    • 使用makefile文件;

学习任务2 (1天)

目的:

学会安装Opencv并对Opencv有初步了解;对使用C++进行图像处理有初步了解;学会编写Makrfile文件,并对cmake有初步了解。

任务:

  • 安装opencv3.0(笔者个人使用了opencv2.4.13,因为3装起来太多error,搞了一个多小时opencv3后因耽误工作效率决定opencv2,果断2分钟搞定)
  • 了解图像的色彩空间(RGB,YUV等),熟悉图像的基本处理方式,例如:膨胀、腐蚀、二值化、均衡化、灰度图等;
  • 使用opencv3.0编写c++程序,对图片进行二值化、均衡化,转换灰度图;并编写Makrfile文件对进行编译;

学习任务3 (1天)

目的:

学习基础知识,能够opencv进行独立编码,掌握opencv的基本操作;熟悉对图像的具体操作方式和图像的直方图统计方式。

任务:

  • 写一个彩色图片中的物体进行边缘检测,能识别出物体的特征区域轮廓。
  • 写一个程序用直方图统计彩色图片像素
  • 写一个程序能进行直方图均衡化

学习任务4 (3天)

目的:

学习SVM原理和PVA特征提取方法,能够独立掌握使用Opencv开发的能力。

任务:

  • 学习图像图像三大特征提取方式(LBP特征,PCA特征,HOG特征)

PCA特征应用:人脸识别

(1)收集人脸库
(2)将人脸库划分为训练库和测试库
(3)使用opencv,将训练库用PCA进行降维,输入给svm进行训练;
(4)对测试图片进行测试,输出所属的人名;
(5)输出平均脸的图片;

学习任务5 (2天)

目的:

学习了解图像的特征提取方式;能够独立掌握使用Opencv开发的能力。

任务:

  • 学习图像图像三大特征提取方式(LBP特征,PCA特征,HOG特征)
  • HOG特征应用:行人检测

HOG特征应用:行人检测

(1)基于opencv
(2)收集行人图片,提取图片的HOG特征训练;
(3)识别出图片中的行人

学习任务6 (2天)

目的:

学习了解人工智能相关领域的知识,特别是SVM、神经网络、CNN、图像卷积等知识哦。

任务:

  • 人工智能学习
    (1)、了解基本的数学算法公式
    (2)、了解深度学习的基本原理,熟悉神经网络
    (3)、了解opencv、caffe的框架体系,了解当前的已经比较成熟的人脸识别、车牌识别、物体识别案例
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值