欢迎关注更多精彩
关注我,学习常用算法与数据结构,一题多解,降维打击。
最大化最小角
推论
有点集P是一般点集(没有多点共线,没有4点共圆),那么该点集的delauney三角后的最小角不小于其他非delauney三角化后的最小角。
有序角
为了证明上述推论,先给出一些概念定义。
对于P点集的任意三角化T, A(T) 为所有角的有序数组。
A ( T ) = ( α 1 , α 2 , . . . , α 3 m ) , m 是三角形个数 A(T) = (\alpha_1, \alpha_2,..., \alpha_{3m}), m是三角形个数 A(T)=(α1,α2,...,α3m),m是三角形个数
T’为P点集的另一个三角化
A ( T ) < A ( T ′ ) 当且仅当存在 i , 使得 α i < α i ′ 且 α j = α j ′ ( j < i ) A(T)< A(T') 当且仅当存在i, 使得 \alpha_i<\alpha_i' 且 \alpha_j=\alpha_j' (j<i) A(T)<A(T′)当且仅当存在i,使得αi<αi′且αj=αj′(j<i)
有序角最大
引理
有点集P是一般点集(没有多点共线,没有4点共圆),D*为该点集的delauney三角化,T为任意三角化,则A(T)<=A(D*)
根据lawson flip 算法我们知道,从普通三角化到delauney三角化可以使用flip不满足空圆性的边来实现。
可以从flip对角的影响来证明。
证明:
上图中左边pqrs 四点共圆,根据圆周角定理,所有名称相同的角都是相等的。
右图中名称与左图相同的角意味着角是相等的,上划线代表大于,下划线代表小于。
右图通过虚线的辅助线,可以知道
α 4 — > α 4 , α 3 — > α 3 ,