Delaunay三角化重要性质,最小角最大化

欢迎关注更多精彩
关注我,学习常用算法与数据结构,一题多解,降维打击。

最大化最小角

推论 有点集P是一般点集(没有多点共线,没有4点共圆),那么该点集的delauney三角后的最小角不小于其他非delauney三角化后的最小角。

有序角

为了证明上述推论,先给出一些概念定义。

对于P点集的任意三角化T, A(T) 为所有角的有序数组。

A ( T ) = ( α 1 , α 2 , . . . , α 3 m ) , m 是三角形个数 A(T) = (\alpha_1, \alpha_2,..., \alpha_{3m}), m是三角形个数 A(T)=(α1,α2,...,α3m),m是三角形个数

T’为P点集的另一个三角化

A ( T ) < A ( T ′ ) 当且仅当存在 i , 使得 α i < α i ′ 且 α j = α j ′ ( j < i ) A(T)< A(T') 当且仅当存在i, 使得 \alpha_i<\alpha_i' 且 \alpha_j=\alpha_j' (j<i) A(T)<A(T)当且仅当存在i,使得αi<αiαj=αj(j<i)

有序角最大

引理 有点集P是一般点集(没有多点共线,没有4点共圆),D*为该点集的delauney三角化,T为任意三角化,则A(T)<=A(D*)

根据lawson flip 算法我们知道,从普通三角化到delauney三角化可以使用flip不满足空圆性的边来实现。

可以从flip对角的影响来证明。

在这里插入图片描述

证明:
上图中左边pqrs 四点共圆,根据圆周角定理,所有名称相同的角都是相等的。

右图中名称与左图相同的角意味着角是相等的,上划线代表大于,下划线代表小于。

右图通过虚线的辅助线,可以知道

α 4 — > α 4 , α 3 — > α 3 ,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值