2jeston nano 上安装darknet

本文介绍了如何在Jetson Nano上安装和配置Darknet以运行YOLOv3模型。首先确认CUDA环境,然后在环境中添加CUDA路径。接着,由于使用的是OpenCV4.1.1,需要修改Makefile和src/image_opencv.cpp以适应OpenCV4,并确保编译时指定正确的CUDNN_HALF选项。最后,下载YOLOv3的Tiny权重文件进行测试。
告知:需要学习YOLOv4进行TT100K数据集上中国交通标志识别的学员请前往(1) Ubuntu系统《YOLOv4目标检测实战:中国交通标志识别》课程链接:https://edu.csdn.net/course/detail/29362(2)《Windows版YOLOv4目标检测实战:中国交通标志识别》课程链接:https://edu.csdn.net/course/detail/29363在无人驾驶中,交通标志识别是一项重要的任务。本课程中的项目以美国交通标志数据集LISA为训练对象,采用YOLOv3目标检测方法实现实时交通标志识别。具体项目过程包括包括:安装Darknet、下载LISA交通标志数据集、数据集格式转换、修改配置文件、训练LISA数据集、测试训练出的网络模型、性能统计(mAP计算和画出PR曲线)和先验框聚类。YOLOv3基于深度学习,可以实时地进行端到端的目标检测,以速度快见长。本课程将手把手地教大家使用YOLOv3实现交通标志的多目标检测。本课程的YOLOv3使用Darknet,在Ubuntu系统上做项目演示。 Darknet是使用C语言实现的轻型开源深度学习框架,依赖少,可移植性好,值得深入学习和探究。除本课程《YOLOv3目标检测实战:交通标志识别》外,本人推出了有关YOLOv3目标检测的系列课程,请持续关注该系列的其它课程视频,包括:《YOLOv3目标检测实战:训练自己的数据集》《YOLOv3目标检测:原理与源码解析》《YOLOv3目标检测:网络模型改进方法》另一门课程《YOLOv3目标检测实战:训练自己的数据集》主要是介绍如何训练自己标注的数据集。而本课程的区别主要在于学习对已标注数据集的格式转换,即把LISA数据集从csv格式转换成YOLOv3所需要的PASCAL VOC格式和YOLO格式。本课程提供数据集格式转换的Python代码。请大家关注以上课程,并选择学习。下图是使用YOLOv3进行交通标志识别的测试结果
### 在 Jeston Nano安装 OpenNI2 要在 Jeston Nano 上成功安装 OpenNI2,可以按照以下方法操作: #### 准备工作 确保 Jeston Nano 已经配置好适合的操作系统,并下载适配 ARM64 架构的 SDK 文件[^1]。通常情况下,Jeston Nano 使用的是基于 Ubuntu 的操作系统版本。 #### 安装依赖项 在开始之前,需要先安装一些必要的软件包来支持 OpenNI2 的运行环境: ```bash sudo apt-get update && sudo apt-get upgrade -y sudo apt-get install build-essential cmake libusb-1.0-0-dev git -y ``` 这些工具和库文件对于后续构建 CMake 和 USB 支持至关重要。 #### 获取并编译 OpenNI2 源码 通过 Git 或者直接从官方仓库获取最新版源代码后,利用 `CMake` 进行本地化编译设置: ```bash git clone https://github.com/OpenNI/OpenNI2.git cd OpenNI2/Platform/Linux/CreateRedist ./RedistLinux.sh ``` 完成脚本执行之后,在当前目录下会产生一个新的可分发文件夹 `Redist` ,其中包含了所有必需组件。 接着进入该路径继续下一步骤处理: ```bash cd ../Redist/ mkdir build && cd build cmake .. make -j$(nproc) sudo make install ``` 以上命令序列完成了针对特定硬件平台定制化的编译流程。 #### 配置环境变量 为了使新安装的服务生效,需增加相应的环境变量到用户的 shell profile 中去。编辑 `.bashrc` 文件加入如下内容: ```bash echo 'export OPEN_NI2_HOME=/usr/local' >> ~/.bashrc echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib' >> ~/.bashrc source ~/.bashrc ``` 每次新开终端都需要重新加载上述更改才能正常运作[^3]。 #### 测试验证 最后一步就是确认整个过程无误,可以通过简单的测试程序来进行功能检验。如果一切顺利的话,则代表已经成功部署完毕。 ```python import openni2 openni2.initialize() # 初始化设备管理器 devs = openni2.Device.get_connected() print(devs) # 打印连接上的摄像头列表 openni2.unload() # 卸载驱动结束使用 ``` 此 Python 脚本片段展示了基本调用逻辑[^4]。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值