1、参考
https://blog.csdn.net/mdllll/article/details/110072342
https://blog.csdn.net/beckhans/article/details/89138876
https://blog.csdn.net/beckhans/article/details/89373939
https://blog.csdn.net/avideointerfaces/article/details/90475694
2、检查CUDA
目录如下
/usr/local
发现最新的 Jetson-nano中已经安装了CUDA10.2版本,但是此时你如果运行 nvcc -V是不会成功的,需要你把CUDA的路径写入环境变量中。OS中自带Vim工具 ,所以运行下面的命令编辑环境变量
sudo vim ~/.bashrc
在最后添加
export CUDA_HOME=/usr/local/cuda-10.2
export LD_LIBRARY_PATH=/usr/local/cuda-10.2/lib64:$LD_LIBRARY_PATH
export PATH=/usr/local/cuda-10.2/bin:$PATH
最后别忘了source一下这个文件
source ~/.bashrc
source后,此时再执行nvcc -V执行结果如下
nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2019 NVIDIA Corporation
Built on Wed_Oct_23_21:14:42_PDT_2019
Cuda compilation tools, release 10.2, V10.2.89
3、下载下面这个darknet,什么问题都没有,针对opencv4的
git clone https://github.com/AlexeyAB/darknet
4、配置下
cd darknet
sudo vim Makefile
5、要修改的4处为,为了添加库的调用添加了LIBSO=1,CUDNN_HALF=0 #xiugai wei 1 jiasu
GPU=1
CUDNN=1
OPENCV=1
CUDNN_HALF=0 #xiugai wei 1 jiasu
LIBSO=1
note: CUDNN_HALF=1 jetson nano buzhichi !!!!
about gpu jia gou
一、NVIDIA GPU的架构演变历史
二、Tesla 架构
三、Fermi架构
四、Kepler架构
五、Maxwell架构
六、Pascal架构
七、Volta架构
八、Turing架构
九、Ampere架构
十、Hopper架构
NVIDIA GPU 架构梳理_查里王的博客-CSDN博客_nvidia显卡架构
6、直接编译
make -j4
7、下载权重文件,这里直接下载tiny版的权重文件
wget https://pjreddie.com/media/files/yolov3-tiny.weights
8. 测试
./darknet detect cfg/yolov3-tiny.cfg yolov3-tiny.weights data/dog.jpg