为什么L1 regularization可以用来做特征选择

根据最优化理论,在损失函数上增加正则项其实等价于正则项有限制条件的情况下最小化损失函数。例如,带正则项的目标函数为:

 (1)

等价于在条件

 (2)

下,最小化least squares的损失函数。这两种等价形式可以根据拉格朗日乘子法关联起来。(1)中的Lambda越大,(2)中的Yita就越小。

那么很显然,选择更大的Lambda,就会使得w的值限制更严格,趋于更小的值。

在(2)中,不同的q值,对应了w的不同的可行解(?)空间。下图是2维参数空间里,不同q值产生的可行解空间的边界。坐标轴分别是我w1 和 w2

如果目标函数是凸的,且最优解不在可行解空间内(否则正则项不起作用),那么显然q <= 1 相比于 q > 1的情况,会有更大的可能性在坐标轴上取得极小值——该坐标轴对应的w值为0。


reference:

http://www.andrewng.org/portfolio/efficient-l1-regularized-logistic-regression/

转载于:https://my.oschina.net/u/2283449/blog/656358

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值