一、L1正则化与L2正则化的区别以及为什么L1正则化可以产生稀疏矩阵,L2正则化可以防止过拟合
正则化(regularization):机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作L1-norm和L2-norm,中文称作 L1正则化 和 L2正则化,或者 L1范数 和 L2范数。
L1正则化和L2正则化可以看做是损失函数的惩罚项。所谓『惩罚』是指对损失函数中的某些参数做一些限制。对于线性回归模型,使用L1正则化的模型建叫做Lasso回归,使用L2正则化的模型叫做Ridge回归(岭回归)。
下图是Python中Lasso回归的损失函数,式中加号后面一项 α ∣ ∣ ω ∣ ∣ 1 \alpha||\omega||_1 α∣∣ω∣∣1即为L1正则化项。
下图是python中Ridge回归的损失函数,式中加号后面一项 α ∣ ∣ ω ∣ ∣ 2 2 \alpha||\omega||^{2}_2 α∣∣ω∣∣22即为L2正则化项。
一般回归分析中,回归 ω \omega ω表示特征的系数,从上式可以看到正则化项是对系数做了处理(限制)。L1正则化和L2正则化的说明如下:
-
L1正则化是指权值向量 ω \omega ω中各个元素的绝对值之和,通常表示为 ∣ ∣ ω ∣ ∣ 1 ||\omega||_1 ∣∣ω∣∣1即为权值向量的一范式
-
L2正则化是指权值向量 ω \omega ω中各个元素的平方和,即为权值向量的二范式。
一般都会在正则化项之前加一个系数,python中用 α \alpha α表示,一些文章也用 λ \lambda λ表示。这个系数需要用户指定。
那么添加L1和L2正则项有什么用?,下面就是L1正则化和L2正则化的作用,这些表述可以再很多文章中找到。 -
L1正则化可以产生稀疏权值矩阵,既产生一个稀疏模型,可以用于特征选择。
-
L2正则化可以防止模型过拟合(overfitting),一定程度上,L1也可以防止过拟合。
稀疏模型与特征选择
上面提到L1正则化有助于生成一个稀疏权值矩阵,进而可以用于特征选择。为什么要生成一个稀疏矩阵?
稀疏矩阵指的是很多元素为0,只有少数元素是非零值的矩阵,即得到的线性回归模型的大部分系数都是0. 通常机器学习中特征数量很多,例如文本处理时,如果将一个词组(term)作为一个特征,那么特征数量会达到上万个(bigram)。在预测或分类时,那么多特征显然难以选择,但是如果代入这些特征得到的模型是一个稀疏模型,表示只有少数特征对这个模型有贡献,绝大部分特征是没有贡献的,或者贡献微小(因为它们前面的系数是0或者是很小的值,即使去掉对模型也没有什么影响),此时我们就可以只关注系数是非零值的特征。这就是稀疏模型与特征选择的关系。
L1和L2正则化的直观解释
这部分内容将解释为什么L1正则化可以产生稀疏模型(L1正则是怎么让系数等于零的),以及为什么L2正则可以防止过拟合。
L1正则化和特征选择
假设有如下带L1正则项的损失函数:
其中 J 0 J_0 J0是原始的损失函数,加号后面的一项是L1正则化项, α \alpha α是正则化系数。注意到L1正则化是权值的绝对值之和, J J J是带有绝对值符号的函数,因此 J J J是不完全可微的。机器学习的任务就是要通过一些方法(比如梯度下降)求出损失函数的最小值。当我们在原始损失函数 J 0 J_0 J0后添加L1正则化项时,相当于对 J 0 J_0 J