前言:
训练种存在顿悟现象,前面100 epoch 前 acc 一直不高,30%-60%。100以后acc 突然变成了
97% 以上。论文里面提供的是Tensor 版本的,这里面更改为PyTorch 版本
人类活动识别受到极大关注,近年来由于大量的应用
旨在监控人类的运动和行为室内区域。 健康监测和跌倒等应用老年人检测[1]、情境意识、活动
对智能家居 [2] 等领域能源效率的认可其他基于物联网 (IoT) 的应用程序 [3]。
在现有系统中,个人必须佩戴设备配备陀螺仪和加速度计等运动传感器。
传感器数据在可穿戴设备上本地处理设备或传输到服务器进行特征提取和然后使用监督学习算法进行分类。这种类型的监控称为主动监控。这该系统的性能显示为 90% 左右识别睡眠、坐着、站立等活动,走路、跑步。然而,总是佩戴设备很麻烦,而且对于许多被动活动识别来说可能是不可能的,应用程序,其中人可能不携带任何传感器或无线设备。虽然可以使用基于摄像头的系统,对于被动活动识别,视线 (LOS) 要求是此类系统的主要限制。此外,基于摄像头的方法存在隐私问题,无法可在许多环境中使用。因此,被动,基于无线信号的监控系统,不侵犯人们的隐私,是人们所希望的。由于室内区域无处不在,最近,WiFi 一直是许多活动识别研究的焦点。此类系统由 WiFi 接入点 (AP) 和位于不同地点的一台或多台支持 WiFi 的设备环境的。当一个人从事某项活动时,身体运动会影响无线信号并改变系统的多路径配置文件。
A. 基于Wi-Fi信号功率的技术接收信号强度(RSSI)已成功使用使用 WiFi 主动定位无线设备指纹技术如[5]中所总结。 RSSI 有也被用作移动设备被动跟踪的指标对象[6]。当人位于 WiFi 之间时 设备和接入点(AP),信号会衰减因此观察到不同的 RSSI。虽然RSSI很使用简单,易于测量,但无法捕获 由于人的运动而导致信号的真实变化。这是因为 RSSI 并不是一个稳定的指标,即使存在环境没有动态变化
整个项目数据集非常大,务必要放在GPU 或者TPU 上面跑。
from google.colab import drive
drive.mount('/content/drive')
path ="content/drive/AI_DataStall"
os.chdir(path)
%run main.py

目录:
- 无线感知概述
- 加载数据集
- 训练部分
一 无线感知概述
无线感知项目主要分为下面三个步骤:
1: 数据预处理
label: one-hot 编码
input: 滑动窗口分帧,windows_size =1000
无线感知数据预处理是核心,跟图像和音频不一样,其幅度和相位变化有对应的物理意义以及数学模型,有很多方案进行预处理。比如共轭天线相乘.
2: 数据降维
重点,这个项目中方案:
1s有1000行的数据,可以间隔2行采样。
3: 通过神经网络进行模式识别


最低0.47元/天 解锁文章
8万+





