前言
训练资源有限的情况下(有限的 GPU、训练数据等),Q-former 也只是一个“低效”压缩器。如果想减少图片 token 数量来降低训练代价,简单的 AdaptiveAveragePooling 就够了。
转载自丨PaperWeekly
我们组最近的工作 DeCo: Decoupling Token Compression from Semantic Abstraction in Multimodal Large Language Models 比较深入地分析了 Q-former 结构的问题。
论文链接:
https://arxiv.org/abs/2405.20985
先说观点:
\1. 训练资源足够的条件下,我们可以在多模态大语言模型中选择 Linear Projector/MLP,作为视觉-文本模态桥接器,即 LLaVA 的路线。Linear Projector 没有视觉信息损失、训练收敛快、表现也好。唯一的问题是会导致图片 token 序列很长,这在 GPU 等训练资源足够的情况下,是可以克服的。
\2. 我们想重点表达的是,训练资源有限的情况下(有限的 GPU、训练数据等),Q-former 也只是一个“低效”压缩器。如果想减少图片 token 数量来降低训练代价,简单的 AdaptiveAveragePooling 就够了。
我们的 DeCo 工作发现在减少图片 token 这个目标上,简单的 average pooling 表现就比 Q-former 更好、训练收敛也更快。同期的工作 PLLaVA 也在实验结果方面证明了 adaptive pooling 的优势。
这里,更重要的问题是“为什么简单的 average pooling 就比 Q-former 结构更好了?”。下面我会大概介绍一下 DeCo 的思路,希望能在一个新的角度给大家启发。
01 Q-former 结构的设计
我们要先从 Q-former 结构的设计说起。它的核心是拿一组预定义好的、可学的、固定数量(M 个)的 Query tokens,通过 cross attention 层去融合来自 image encoder 的 image token 信息。因为 Query tokens 的数量 M 是一个超参,所以我们可以灵活设一个比原始 image tokens number 小的数,就减少了 image tokens。
▲ Q-former 结构
这个设计和 object detection 任务中一个非常经典的工作 DETR 很像。在 DETR 中,这一组 query tokens 是用来提取 object proposal 的,可以认为输入图片特征,query tokens 从中提取到了语义级别的 object concepts。
▲ DETR 结构
对 DETR 中学习到的 query tokens 的可视化(from GAE):
▲ 对 DETR 中不同 query 的可视化
02 在MLLM中,Q-former学到了什么?
类似地,我们可以推断,MLLM 中的 Q-former 也是通过提取视觉 concepts 来减少图片 tokens 数量的,预期 Q-former 的输出 tokens 应该代表一组 visual concepts。
我们在 DeCo 中可视化了 MLLM 中 Q-former 训练后的输出,验证了 Q-former 确实是在视觉语义级别的压缩。下图可视化了 MLLM 中训练好的 Q-former 的输出,高亮了每个 query token 相对于原始图片 patch 的相关性矩阵。我们可以看到,将 576 image tokens 压缩成 64 query tokens,每个 query token 在负责不同的 visual concepts,包括不同的 objects、attributes 和 background 等等。
▲ 可视化 64 个 query tokens
03 Q-former 的问题
问题1:作为一个视觉语义提取器,Q-former 是很难学好的。 和它的参数量没有直接的关系,比如只用 2 层的轻量 Q-former,也非常难学好。例如,我们的实验中把 LLaVA 那套框架,完全相同的模型、数据、训练配置,把 MLP 换成轻量的 2 层 Q-former(且用 BLIP-2 的参数初始化),实验结果依然下降非常夸张。
我们猜测是 LLaVA 使用的 558K+665K 量级的数据不足以把 Qformer 学好,但是简单地加入 CC12M 的数据或者其他数据进行尝试,也没有提升,这其中数据的调配、超参的调整等等流程大大增加了学好一个 MLLM 的难度,很复杂。考虑到 Qwen-VL-Chat 系列依然有很强的表现,我们不否认一个好的 Q-former 的上限,但是它确实在训练方面不简洁也不高效。放一张 Qwen-VL 论文中使用的数据感受下:
问题2:由于不好学,Q-former很容易成为MLLM中的一个bottleneck,丢失重要的视觉信息。
比如通过上面可视化的 64 个 query tokens,query tokens 学到的视觉 concepts 可能是:1)稀疏的,只包含了有限的视觉 concepts,2)重复的,不同的 query tokens 表达了重复的视觉 concepts,比如下面红色框和绿色框的 query tokens 是重复的。Honeybee 这篇工作还指出原始的 Q-former 结构会丢失图片的空间位置信息,等等。Q-former 中视觉信息的损失,会传递到 LLM,是不可逆的。
▲ 相同颜色框出的 query tokens 是重复的。这种重复的现象在不同的图片中都出现了。
问题3:在 MLLM 中,Q-former 结构的视觉语义提取是多余的。在 DeCo 工作中,我们解耦了 MLLM 中图文模态之间的语义对齐流,如下图。我们发现经过多模态对齐后,LLM 本身就是一个很好的视觉语义提取器。本质上,线性层或者 MLP 层映射后得到的还是 patch 级别的视觉特征、不是语义级别的,现在 LLaVA 路线强大的模型表现也证实了 LLM 能很好地提取视觉语义来生成文本回答。
那么,Q-former 对视觉语义的预提取其实就是多余的:让 Q-former 先进行一遍视觉语义提取得到视觉 concepts,然后让 LLM 基于这些视觉 concepts、根据输入的文本问题再进行一遍语义提取生成回答,就很“曲线救国”。本着“让专业的人做专业的事”的想法,在 MLLM 中,让强大的 LLM 来做语义级别的理解和提取是更合理的,没必要花很大精力和成本,再去学一个好的 Q-former。
▲ Q-former 中的视觉语义损失会传递给 LLM,导致最终的文到图(Text-to-Patch)语义对齐出现错误
所以,DeCo 的核心思想就是:为了减少图片 token 数,没必要用 Q-former 这种很难学习的视觉语义提取器,简单地在 patch-level 进行一个下采样就能减少 token 数,即 Decoupling Token Compression from Semantic Abstraction(DeCo)。那么最常见的一种下采样方式就是 2D adaptive pooling。
相比于 Q-former,Adaptive pooling 的好处是:1)pooling 操作是无参的,后接一个 MLP 映射一下视觉特征维度就可,训练收敛很快、简洁高效,不需要很多训练数据;2)2D 的基于 kernel 和 stride 的操作(类似 CNN 卷积核),能保留图片的空间信息。更多细节可以关注我们的论文。
在对比实验中,我们使用了完全相同的实验设置、相同的压缩比(576 image tokens -> 144 query tokens),相比原始的 Q-former 和增强后的 locality-aware Q-former(即 Honeybee 中提出的 C-Abstractor 和 D-Abstractor),DeCo 的方法具有效率和表现上的优势。
其他值得讨论的:
DeCo 的核心是应该丢弃 Q-former 这种语义压缩器,简单在 Patch-level 或者更原始的 pixel-level 进行下采样来减少图片 token 数。它的思想不局限于 Average Pooling,我们只是通过分析和实验证明了 average pooling 是一种很好的下采样方式。
对于 image tokens,Q-former 是在视觉语义层面进行压缩、可能会丢失语义信息;而 adaptive pooling 本质上在 patch 级别进行一个稠密的下采样,可能会丢失原始的 patch 信息。
在不同的压缩比下,两者的信息损失也是一种 trade off。在常见的压缩需求上,比如用 144 tokens 来表示一张图片,adaptive pooling 的表现挺能打。同时,它在训练效率方面具有极大的优势,也不需要大量训练数据。实现上,可以直接调用 pytorch 的 torch.nn.AdaptiveAvgPool2d 函数,简洁方便。
关于实验的设置,我们主要是在比较少的训练资源下训练的(LLaVA 的设置),average pooling 表现很好。在训练资源比较丰富的时候(更多数据、更多卡),参考 MM1 的结论,Q-former 相比于 average pooling 也没有优势。
▲ 图中的 Att Pool 就是 Q-former 结构
视频理解任务(多图)或者高分辨率图片的场景下,视觉端的 token 序列会很长,这个时候用 average pooling 相比于 MLP 能大大减少 token 的数量。目前 DeCo 和 PLLaVA 主要是在 spatial 维度上验证了 average pooling 的简洁高效,但是在 temporal 维度上还没有充分的探索。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
本文转自 https://blog.csdn.net/python12345_/article/details/141421099?spm=1001.2014.3001.5501,如有侵权,请联系删除。