cross product or vector product - 叉积或向量积

cross product or vector product - 叉积或向量积

In mathematics, the cross product or vector product (occasionally directed area product to emphasize the geometric significance) is a binary operation on two vectors in three-dimensional space ( R 3 ) \left(\mathbb {R} ^{3}\right) (R3) and is denoted by the symbol × \times ×. Given two linearly independent vectors a \mathbf {a} a and b \mathbf {b} b, the cross product, a × b \mathbf {a} \times \mathbf {b} a×b (read a cross b), is a vector that is perpendicular to both a \mathbf {a} a and b \mathbf {b} b and thus normal to the plane containing them. It has many applications in mathematics, physics, engineering, and computer programming. It should not be confused with the dot product (projection product).
在数学中,叉积或向量积 (偶尔 directed area product 以强调几何学意义) 是对三维空间 ( R 3 ) \left(\mathbb {R} ^{3}\right) (R3) 中两个向量的二元运算,用符号 × \times × 表示。给定两个线性独立的向量 a \mathbf {a} a and b \mathbf {b} b,交叉积为 a × b \mathbf {a} \times \mathbf {b} a×b (read a cross b),交叉积是与 a \mathbf {a} a and b \mathbf {b} b 都垂直的向量,因此垂直于包含它们的平面。它在数学,物理,工程和计算机编程中有许多应用。不要与 dot product (projection product) 混淆。

在数学和向量代数领域,叉积 (cross product) 又称向量积 (vector product),是对三维空间中的两个向量的二元运算,使用符号 × \times ×。与点积不同,它的运算结果是向量。对于线性无关的两个向量 a \mathbf {a} a b \mathbf {b} b,它们的叉积写作 a × b \mathbf {a} \times \mathbf {b} a×b,是 a \mathbf {a} a b \mathbf {b} b 所在平面的法线向量,与 a \mathbf {a} a b \mathbf {b} b 都垂直。叉积被广泛运用于数学、物理、工程学、计算机科学领域。

mathematic [,mæθə'mætɪk]:adj. 数学的,精确的,数理的,肯定的,精确的,严谨的
occasionally [əˈkeɪʒnəli]:adv. 偶尔,间或
geometric [,dʒɪə'metrɪk]:adj. 几何学的,几何学图形的
significance [sɪg'nɪfɪk(ə)ns]:n. 意义,重要性,意思
linearly ['liniəli]:adv. 成直线地,在线上地
perpendicular [,pɜːp(ə)n'dɪkjʊlə]:adj. 垂直的,正交的,直立的,陡峭的 n. 垂线,垂直的位置
dot product:点积
independent [,ɪndɪ'pendənt]:adj. 独立的,单独的,无党派的,不受约束的 n. 独立自主者,无党派者

If two vectors have the same direction (or have the exact opposite direction from one another, i.e. are not linearly independent) or if either one has zero length, then their cross product is zero. More generally, the magnitude of the product equals the area of a parallelogram with the vectors for sides; in particular, the magnitude of the product of two perpendicular vectors is the product of their lengths. The cross product is anticommutative (i.e., a × b = − b × a \mathbf {a} \times \mathbf {b} =-\mathbf {b} \times \mathbf {a} a×b=b×a) and is distributive over addition (i.e., a × ( b + c ) = a × b + a × c \mathbf {a} \times (\mathbf {b} +\mathbf {c} )=\mathbf {a} \times \mathbf {b} +\mathbf {a} \times \mathbf {c} a×(b+c)=a×b+a×c).
如果两个向量具有相同的方向 (或者具有彼此完全相反的方向,不是线性独立的),或者如果任一个向量具有零长度,则它们的叉积为零。推广开来,叉积的模长和以这两个向量为边的平行四边形的面积相等。特别地,如果两个向量成直角,它们叉积的模长即为两者长度的乘积。叉积是反交换的 (i.e., a × b = − b × a \mathbf {a} \times \mathbf {b} =-\mathbf {b} \times \mathbf {a} a×b=b×a)。并且服从加法分配律 (i.e., a × ( b + c ) = a × b + a × c \mathbf {a} \times (\mathbf {b} +\mathbf {c} )=\mathbf {a} \times \mathbf {b} +\mathbf {a} \times \mathbf {c} a×(b+c)=a×b+a×c)。

opposite ['ɒpəzɪt; -sɪt]:adj. 相反的,对面的,对立的 n. 对立面,反义词 prep. 在...的对面 adv. 在对面
magnitude ['mægnɪtjuːd]:n. 大小,量级,震级,重要,光度
parallelogram [ˌpærə'leləgræm]:n. 平行四边形
anticommutative [,æntikə'mju:tətiv]:adj. 反对易的,反交换的
distributive [dɪ'strɪbjʊtɪv]:adj. 分配的,分布的,分发的 n. 分配词
distributive [dɪ'strɪbjʊtɪv]:adj. 分配的,分布的,分发的 n. 分配词
commutative [kə'mjuːtətɪv; 'kɒmjʊ,tətɪv]:adj. 交换的,交替的,代替的
bracket ['brækɪt]:n. 支架,墙上凸出的托架,括号,等级,范围 vt. 括在一起,把...归入同一类,排除

如果两个向量方向相同或相反 (即它们非线性无关),亦或任意一个的长度为零,那么它们的叉积为零。推广开来,叉积的模长和以这两个向量为边的平行四边形的面积相等。如果两个向量成直角,它们叉积的模长即为两者长度的乘积。

Like the dot product, it depends on the metric of Euclidean space, but unlike the dot product, it also depends on a choice of orientation or “handedness”.
叉积和点积一样依赖于欧几里德空间的度量,但与点积之不同的是,叉积还依赖于定向或右手定则。

handedness ['hændɪdnɪs]:n. 左撇子 (或右撇子) 倾向,不对称
pseudovector [,sjuːdəʊ'vektə]:伪矢量,赝矢量
bivector:n. 二重向量,二维向量,双矢
trivial ['trɪvɪəl]:adj. 不重要的,琐碎的,琐细的

在这里插入图片描述

The cross product in respect to a right-handed coordinate system.
在右手坐标系中的向量积。

1. Definition

The cross product of two vectors a \mathbf {a} a and b \mathbf {b} b is defined only in three-dimensional space and is denoted by a × b \mathbf {a} \times \mathbf {b} a×b. In physics, sometimes the notation a ∧ b \mathbf {a} \wedge \mathbf {b} ab is used, though this is avoided in mathematics to avoid confusion with the exterior product.
两个向量 a \mathbf {a} a b \mathbf {b} b 的叉积仅在三维空间中有定义,写作 a × b \mathbf {a} \times \mathbf {b} a×b在物理学中,叉积有时也被写成 a ∧ b \mathbf {a} \wedge \mathbf {b} ab,但在数学中 a ∧ b \mathbf {a} \wedge \mathbf {b} ab 是外代数中的外积。

The cross product a × b \mathbf {a} \times \mathbf {b} a×b is defined as a vector c \mathbf {c} c that is perpendicular (orthogonal) to both a \mathbf {a} a and b \mathbf {b} b, with a direction given by the right-hand rule and a magnitude equal to the area of the parallelogram that the vectors span.
叉积 a × b \mathbf {a} \times \mathbf {b} a×b 是与 a \mathbf {a} a b \mathbf {b} b 都垂直的向量 c \mathbf {c} c。其方向由右手定则决定,模长等于以两个向量为边的平行四边形的面积。

The cross product is defined by the formula

a × b = ∥ a ∥ ∥ b ∥ sin ⁡ ( θ )   n \mathbf {a} \times \mathbf {b} =\left\|\mathbf {a} \right\|\left\|\mathbf {b} \right\|\sin(\theta )\ \mathbf {n} a×b=absin(θ) n

where θ \theta θ is the angle between a and b in the plane containing them ( 0 ∘ ≤ θ ≤ 18 0 ∘ 0^{\circ }\leq \theta \leq 180^{\circ } 0θ180), ∥ a ∥ \|\mathbf {a} \| a ∥ b ∥ \|\mathbf {b} \| b are the magnitudes of vectors a \mathbf {a} a and b \mathbf {b} b, and n \mathbf{n} n is a unit vector perpendicular to the plane containing a \mathbf {a} a and b \mathbf {b} b in the direction given by the right-hand rule. If the vectors a \mathbf {a} a and b \mathbf {b} b are parallel (i.e., the angle θ \theta θ between them is either 0 ∘ 0^{\circ } 0 or 18 0 ∘ 180^{\circ } 180), by the above formula, the cross product of a \mathbf {a} a and b \mathbf {b} b is the zero vector 0 \mathbf{0} 0.
叉积可以定义为:

a × b = ∥ a ∥ ∥ b ∥ sin ⁡ ( θ )   n \mathbf {a} \times \mathbf {b} =\|\mathbf {a} \|\|\mathbf {b} \|\sin(\theta )\ \mathbf {n} a×b=absin(θ) n

其中 θ \theta θ 表示 a \mathbf {a} a b \mathbf {b} b 在它们所定义的平面上的夹角 ( 0 ∘ ≤ θ ≤ 18 0 ∘ 0^{\circ }\leq \theta \leq 180^{\circ } 0θ180)。 ∥ a ∥ \|\mathbf {a} \| a ∥ b ∥ \|\mathbf {b} \| b 是向量 a \mathbf {a} a b \mathbf {b} b 的模长,而 n \mathbf{n} n 则是一个与 a \mathbf {a} a b \mathbf {b} b 所构成的平面垂直的单位向量,方向由右手定则决定。根据上述公式,当 a \mathbf {a} a b \mathbf {b} b 平行 (即 θ \theta θ 0 ∘ 0^{\circ } 0 18 0 ∘ 180^{\circ } 180) 时,它们的叉积为零向量 0 \mathbf{0} 0

在这里插入图片描述

使用右手定则确定叉积的方向

By convention, the direction of the vector n \mathbf{n} n is given by the right-hand rule, where one simply points the forefinger of the right hand in the direction of a \mathbf {a} a and the middle finger in the direction of b \mathbf {b} b. Then, the vector n \mathbf{n} n is coming out of the thumb. Using this rule implies that the cross product is anti-commutative, i.e., a × b = − ( b × a ) \mathbf {a} \times \mathbf {b} = -(\mathbf {b} \times \mathbf {a}) a×b=(b×a). By pointing the forefinger toward b \mathbf {b} b first, and then pointing the middle finger toward a \mathbf {a} a, the thumb will be forced in the opposite direction, reversing the sign of the product vector.
按照惯例,向量 n \mathbf{n} n 的方向由右手定则决定:将右手食指指向 a \mathbf {a} a 的方向、中指指向 b \mathbf {b} b 的方向,则此时拇指的方向即为 n \mathbf{n} n 的方向。使用这一定则意味着叉积满足反交换律, a × b = − ( b × a ) \mathbf {a} \times \mathbf {b} = -(\mathbf {b} \times \mathbf {a}) a×b=(b×a)。将右手食指指向 b \mathbf {b} b、中指指向 a \mathbf {a} a,那么拇指就必定指向相反方向,即翻转了叉积的符号。

由此可以看出,使用叉积需要考虑坐标系的利手性 (handedness),如果使用的是左手坐标系,向量 n \mathbf{n} n 的方向需要使用左手定则决定,与右手坐标系中的方向相反。

这样就会带来一个问题:参照系的变换不应该影响 n \mathbf{n} n 的方向 (例如从右手坐标系到左手坐标系的镜像变换)。因此,两个向量的叉积并不是 (真) 向量,而是伪向量。

在这里插入图片描述
叉积 a × b \mathbf {a} \times \mathbf {b} a×b (垂直方向、紫色) 随着向量 a \mathbf {a} a (蓝色) 和 b \mathbf {b} b (红色) 的夹角变化。叉积垂直于两个向量,模长在两者平行时为零、在两者垂直时达到最大值 ∥ a ∥ ∥ b ∥ \|\mathbf {a} \|\|\mathbf {b} \| ab

confusion [kən'fjuːʒ(ə)n]:n. 混淆,混乱,困惑
orthogonal [ɔː'θɒg(ə)n(ə)l]:adj. 正交的,直角的 n. 正交直线
magnitude ['mægnɪtjuːd]:n. 大小,量级,震级,重要,光度
parallelogram [ˌpærə'leləgræm]:n. 平行四边形
span [spæn]:n. 跨度,跨距,范围 vt. 跨越,持续,以手指测量
perpendicular [,pɜːp(ə)n'dɪkjʊlə]:adj. 垂直的,正交的,直立的,陡峭的 n. 垂线,垂直的位置
forefinger ['fɔːfɪŋgə]:n. 食指
anticommutative [,æntikə'mju:tətiv]:adj. 反对易的,反交换的
reverse [rɪ'vɜːs]:v. 颠倒,撤销,反转,交换,放弃立场,倒车,打对方付费的电话,(使铅字、图案) 印成白或浅色 n. 逆向,相反,背面,倒档,失败,(美橄) 横式传球,(翻开书的) 左手页 adj. 相反的,背面的,颠倒的,反身的,(地层) 逆断的

2. 坐标表示

右手坐标系中,基向量 i \mathbf {i} i j \mathbf{j} j k \mathbf{k} k 满足以下等式:

i × j = k j × k = i k × i = j \begin{aligned} \mathbf {i} \times \mathbf {j} =\mathbf {k} \\ \mathbf {j} \times \mathbf {k} =\mathbf {i} \\ \mathbf {k} \times \mathbf {i} =\mathbf {j} \end{aligned} i×j=kj×k=ik×i=j

根据反交换律可以得出:

j × i = − k k × j = − i i × k = − j \begin{aligned} \mathbf {j\times i} =-\mathbf {k} \\ \mathbf {k\times j} =-\mathbf {i} \\ \mathbf {i\times k} =-\mathbf {j} \end{aligned} j×i=kk×j=ii×k=j

根据叉积的定义可以得出:

i × i = j × j = k × k = 0 \mathbf {i} \times \mathbf {i} =\mathbf {j} \times \mathbf {j} =\mathbf {k} \times \mathbf {k} =\mathbf {0} i×i=j×j=k×k=0 (零向量)。

根据以上等式,结合叉积的分配律和线性关系,就可以确定任意向量的叉积。

向量 u \mathbf{u} u v \mathbf {v} v 可以定义为平行于基向量的三个正交元素之和:

u = u 1 i + u 2 j + u 3 k v = v 1 i + v 2 j + v 3 k \begin{aligned} \mathbf {u} &=u_{1}\mathbf {i} +u_{2}\mathbf {j} +u_{3}\mathbf {k} \\ \mathbf {v} &=v_{1}\mathbf {i} +v_{2}\mathbf {j} +v_{3}\mathbf {k} \end{aligned} uv=u1i+u2j+u3k=v1i+v2j+v3k

两者的叉积 u × v \mathbf {u} \times \mathbf {v} u×v 可以根据分配律展开:

u × v = ( u 1 i + u 2 j + u 3 k ) × ( v 1 i + v 2 j + v 3 k ) = u 1 v 1 ( i × i ) + u 1 v 2 ( i × j ) + u 1 v 3 ( i × k ) + u 2 v 1 ( j × i ) + u 2 v 2 ( j × j ) + u 2 v 3 ( j × k ) + u 3 v 1 ( k × i ) + u 3 v 2 ( k × j ) + u 3 v 3 ( k × k ) \begin{aligned} \mathbf {u} \times \mathbf {v} ={}&(u_{1}\mathbf {i} +u_{2}\mathbf {j} +u_{3}\mathbf {k} )\times (v_{1}\mathbf {i} +v_{2}\mathbf {j} +v_{3}\mathbf {k} )\\ ={}&u_{1}v_{1}(\mathbf {i} \times \mathbf {i} )+u_{1}v_{2}(\mathbf {i} \times \mathbf {j} )+u_{1}v_{3}(\mathbf {i} \times \mathbf {k} )+{}\\ &u_{2}v_{1}(\mathbf {j} \times \mathbf {i} )+u_{2}v_{2}(\mathbf {j} \times \mathbf {j} )+u_{2}v_{3}(\mathbf {j} \times \mathbf {k} )+{}\\ &u_{3}v_{1}(\mathbf {k} \times \mathbf {i} )+u_{3}v_{2}(\mathbf {k} \times \mathbf {j} )+u_{3}v_{3}(\mathbf {k} \times \mathbf {k} )\\ \end{aligned} u×v==(u1i+u2j+u3k)×(v1i+v2j+v3k)u1v1(i×i)+u1v2(i×j)+u1v3(i×k)+u2v1(j×i)+u2v2(j×j)+u2v3(j×k)+u3v1(k×i)+u3v2(k×j)+u3v3(k×k)

即把 u × v \mathbf {u} \times \mathbf {v} u×v 分解为九个仅涉及 i \mathbf {i} i j \mathbf{j} j k \mathbf{k} k 的简单叉积之和。九个叉积各自所涉及的向量,要么相互平行、要么相互正交。将最前面所述的几个等式带入其中,然后合并同类项,可以得到:

u × v = − u 1 v 1 0 + u 1 v 2 k − u 1 v 3 j − u 2 v 1 k − u 2 v 2 0 + u 2 v 3 i + u 3 v 1 j − u 3 v 2 i − u 3 v 3 0 = ( u 2 v 3 − u 3 v 2 ) i + ( u 3 v 1 − u 1 v 3 ) j + ( u 1 v 2 − u 2 v 1 ) k \begin{aligned} \mathbf {u} \times \mathbf {v} ={}&-u_{1}v_{1}\mathbf {0} +u_{1}v_{2}\mathbf {k} -u_{1}v_{3}\mathbf {j} \\ &-u_{2}v_{1}\mathbf {k} -u_{2}v_{2}\mathbf {0} +u_{2}v_{3}\mathbf {i} \\ &+u_{3}v_{1}\mathbf {j} -u_{3}v_{2}\mathbf {i} -u_{3}v_{3}\mathbf {0} \\ ={}&(u_{2}v_{3}-u_{3}v_{2})\mathbf {i} +(u_{3}v_{1}-u_{1}v_{3})\mathbf {j} +(u_{1}v_{2}-u_{2}v_{1})\mathbf {k} \\ \end{aligned} u×v==u1v10+u1v2ku1v3ju2v1ku2v20+u2v3i+u3v1ju3v2iu3v30(u2v3u3v2)i+(u3v1u1v3)j+(u1v2u2v1)k

即结果向量 s = s 1 i + s 2 j + s 3 k = u × v \mathbf {s} =s_{1}\mathbf {i} +s_{2}\mathbf {j} +s_{3}\mathbf {k} =\mathbf {u} \times \mathbf {v} s=s1i+s2j+s3k=u×v 的三个标量元素为:

s 1 = u 2 v 3 − u 3 v 2 s 2 = u 3 v 1 − u 1 v 3 s 3 = u 1 v 2 − u 2 v 1 \begin{aligned} s_{1}&=u_{2}v_{3}-u_{3}v_{2}\\ s_{2}&=u_{3}v_{1}-u_{1}v_{3}\\ s_{3}&=u_{1}v_{2}-u_{2}v_{1} \end{aligned} s1s2s3=u2v3u3v2=u3v1u1v3=u1v2u2v1

也可以记作列向量的形式:

( s 1 s 2 s 3 ) = ( u 2 v 3 − u 3 v 2 u 3 v 1 − u 1 v 3 u 1 v 2 − u 2 v 1 ) {\begin{pmatrix}s_{1}\\s_{2}\\s_{3}\end{pmatrix}}={\begin{pmatrix}u_{2}v_{3}-u_{3}v_{2}\\u_{3}v_{1}-u_{1}v_{3}\\u_{1}v_{2}-u_{2}v_{1}\end{pmatrix}} s1s2s3=u2v3u3v2u3v1u1v3u1v2u2v1

在这里插入图片描述
基向量 ( i \mathbf {i} i j \mathbf {j} j k \mathbf {k} k,也记作 e 1 \mathbf { e }_1 e1 e 2 \mathbf { e }_2 e2 e 3 \mathbf { e }_3 e3) 和向量 a \mathbf {a} a 的分解 ( a x \mathbf { a }_x ax a y \mathbf { a }_y ay a z \mathbf { a }_z az,也记作 a 1 \mathbf { a}_1 a1 a 2 \mathbf { a}_2 a2 a 3 \mathbf { a}_3 a3)。

3. 矩阵表示

叉积可以表达为这样的行列式:

u × v = ∣ i j k u 1 u 2 u 3 v 1 v 2 v 3 ∣ \mathbf {u\times v} ={ \begin{vmatrix} \mathbf {i} &\mathbf {j} &\mathbf {k} \\ u_{1}&u_{2}&u_{3}\\ v_{1}&v_{2}&v_{3}\\ \end{vmatrix}} u×v=iu1v1ju2v2ku3v3

这个行列式可以使用萨吕法则或拉普拉斯展开计算。使用萨吕法则可以展开为:

u × v = ( u 2 v 3 i + u 3 v 1 j + u 1 v 2 k ) − ( u 3 v 2 i + u 1 v 3 j + u 2 v 1 k ) = ( u 2 v 3 − u 3 v 2 ) i + ( u 3 v 1 − u 1 v 3 ) j + ( u 1 v 2 − u 2 v 1 ) k \begin{aligned} \mathbf {u\times v} &=(u_{2}v_{3}\mathbf {i} +u_{3}v_{1}\mathbf {j} +u_{1}v_{2}\mathbf {k} )-(u_{3}v_{2}\mathbf {i} +u_{1}v_{3}\mathbf {j} +u_{2}v_{1}\mathbf {k} )\\ &=(u_{2}v_{3}-u_{3}v_{2})\mathbf {i} +(u_{3}v_{1}-u_{1}v_{3})\mathbf {j} +(u_{1}v_{2}-u_{2}v_{1})\mathbf {k} \end{aligned} u×v=(u2v3i+u3v1j+u1v2k)(u3v2i+u1v3j+u2v1k)=(u2v3u3v2)i+(u3v1u1v3)j+(u1v2u2v1)k

使用拉普拉斯展开可以沿第一行展开为:

u × v = ∣ u 2 u 3 v 2 v 3 ∣ i − ∣ u 1 u 3 v 1 v 3 ∣ j + ∣ u 1 u 2 v 1 v 2 ∣ k = ( u 2 v 3 − u 3 v 2 ) i − ( u 1 v 3 − u 3 v 1 ) j + ( u 1 v 2 − u 2 v 1 ) k \begin{aligned} \mathbf {u\times v} &={\begin{vmatrix}u_{2}&u_{3}\\ v_{2}&v_{3}\end{vmatrix}}\mathbf {i} -{\begin{vmatrix}u_{1}&u_{3}\\ v_{1}&v_{3}\end{vmatrix}}\mathbf {j} +{\begin{vmatrix}u_{1}&u_{2}\\ v_{1}&v_{2}\end{vmatrix}}\mathbf {k} \\ &=(u_{2}v_{3}-u_{3}v_{2})\mathbf {i} -(u_{1}v_{3}-u_{3}v_{1})\mathbf {j} +(u_{1}v_{2}-u_{2}v_{1})\mathbf {k} \end{aligned} u×v=u2v2u3v3iu1v1u3v3j+u1v1u2v2k=(u2v3u3v2)i(u1v3u3v1)j+(u1v2u2v1)k

都可以直接得到结果向量。

4. 代数性质

对于任意三个向量 a \mathbf {a} a b \mathbf {b} b c \mathbf {c} c

a × a = 0 \mathbf {a} \times \mathbf {a} =\mathbf {0} a×a=0
a × 0 = 0 \mathbf {a} \times \mathbf {0} =\mathbf {0} a×0=0
a × b = − ( b × a ) \mathbf {a} \times \mathbf {b} =-(\mathbf {b} \times \mathbf {a} ) a×b=(b×a) (反交换律)
a × ( b + c ) = a × b + a × c \mathbf {a} \times (\mathbf {b} +\mathbf {c} )=\mathbf {a} \times \mathbf {b} +\mathbf {a} \times \mathbf {c} a×(b+c)=a×b+a×c (加法的左分配律)
( a + b ) × c = a × c + b × c (\mathbf {a} +\mathbf {b} )\times \mathbf {c} =\mathbf {a} \times \mathbf {c} +\mathbf {b} \times \mathbf {c} (a+b)×c=a×c+b×c (加法的右分配律)
( λ a ) × b = λ ( a × b ) = a × ( λ b ) (\lambda \mathbf {a} )\times \mathbf {b} =\lambda (\mathbf {a} \times \mathbf {b} )=\mathbf {a} \times (\lambda \mathbf {b} ) (λa)×b=λ(a×b)=a×(λb)
a × b + c × d = ( a − c ) × ( b − d ) + a × d + c × b \mathbf {a} \times \mathbf {b} +\mathbf {c} \times \mathbf {d} =(\mathbf {a} -\mathbf {c} )\times (\mathbf {b} -\mathbf {d} )+\mathbf {a} \times \mathbf {d} +\mathbf {c} \times \mathbf {b} a×b+c×d=(ac)×(bd)+a×d+c×b
∣ a × b ∣ = ∣ b × a ∣ |\mathbf {a} \times \mathbf {b} |=|\mathbf {b} \times \mathbf {a} | a×b=b×a
∣ a × b ∣ 2 = ∣ a ∣ 2 ∣ b ∣ 2 − ( a ⋅ b ) 2 = ∣ a ⋅ a a ⋅ b a ⋅ b b ⋅ b ∣ |\mathbf {a} \times \mathbf {b} |^{2}=|\mathbf {a} |^{2}|\mathbf {b} |^{2}-(\mathbf {a} \cdot \mathbf {b} )^{2}={\begin{vmatrix}\mathbf {a} \cdot \mathbf {a} &\mathbf {a} \cdot \mathbf {b} \\\mathbf {a} \cdot \mathbf {b} &\mathbf {b} \cdot \mathbf {b} \\\end{vmatrix}} a×b2=a2b2(ab)2=aaababbb (拉格朗日恒等式)

一般来说,向量叉积不遵守约简律,即 a × b = a × c \mathbf {a} \times \mathbf {b} =\mathbf {a} \times \mathbf {c} a×b=a×c 不表示 b = c \mathbf {b} =\mathbf {c} b=c。此外, a × b = 0 \mathbf {a} \times \mathbf {b} =\mathbf {0} a×b=0 不表示 a = 0 \mathbf {a} =\mathbf {0} a=0 b = 0 \mathbf {b} =\mathbf {0} b=0

但对于两个非零向量 a \mathbf {a} a b \mathbf {b} b a × b = 0 \mathbf {a} \times \mathbf {b} =\mathbf {0} a×b=0 当且仅当 a \mathbf {a} a 平行于 b \mathbf {b} b

5. 几何意义

如果以向量 a \mathbf {a} a b \mathbf {b} b 为边构成一个平行四边形,那么这两个向量叉积的模长与这个平行四边形的正面积相等:

∥ a × b ∥ = ∥ a ∥ ∥ b ∥ sin ⁡ θ . \left\|\mathbf {a} \times \mathbf {b} \right\|=\left\|\mathbf {a} \right\|\left\|\mathbf {b} \right\|\sin \theta . a×b=absinθ.

在这里插入图片描述

平行四边形面积即叉积的模长

同时,如果以向量 a \mathbf {a} a b \mathbf {b} b c \mathbf {c} c 为棱构成一个平行六面体,那么这个平行六面体的体积 V {\mathbf {V}} V 也可以通过叉积和点积的组合得到,这种积称作标量三重积:

a ⋅ ( b × c ) = b ⋅ ( c × a ) = c ⋅ ( a × b ) . \mathbf {a} \cdot (\mathbf {b} \times \mathbf {c} )=\mathbf {b} \cdot (\mathbf {c} \times \mathbf {a} )=\mathbf {c} \cdot (\mathbf {a} \times \mathbf {b} ). a(b×c)=b(c×a)=c(a×b).

因为标量三重积可能为负,平行六面体的体积需要取其绝对值:

V = ∣ a ⋅ ( b × c ) ∣ V=|\mathbf {a} \cdot (\mathbf {b} \times \mathbf {c} )| V=a(b×c)

在这里插入图片描述

三个向量定义平行六面体

因为叉积的模长与其参数夹角的正弦有关,可以认为叉积是“垂直度”的度量,正如点积是“平行度”的度量一样。对于任意两个单位向量,叉积为 1 意味着它们互相垂直,叉积为 0 意味着它们互相平行。点积则相反:点积为 0 意味着它们互相垂直。

单位向量还能带来两个特性:两个单位向量的点积是它们夹角的余弦 (可正可负),它们叉积的模长则为夹角的正弦 (始终为正)。

6. 三维坐标

给定直角坐标系的单位向量 i {\mathbf {i}} i j \mathbf{j} j k \mathbf{k} k 满足下列等式:

i × j = k \mathbf {i} \times \mathbf {j} =\mathbf {k} i×j=k j × k = i \mathbf {j} \times \mathbf {k} =\mathbf {i} j×k=i k × i = j \mathbf {k} \times \mathbf {i} =\mathbf {j} k×i=j

通过这些规则,两个向量的叉积的坐标可以方便地计算出来,不需要考虑任何角度:设

a = a 1 i + a 2 j + a 3 k \mathbf {a} =a_{1}\mathbf {i} +a_{2}\mathbf {j} +a_{3}\mathbf {k} a=a1i+a2j+a3k
b = b 1 i + b 2 j + b 3 k \mathbf {b} =b_{1}\mathbf {i} +b_{2}\mathbf {j} +b_{3}\mathbf {k} b=b1i+b2j+b3k

a × b = ( a 2 b 3 − a 3 b 2 ) i + ( a 3 b 1 − a 1 b 3 ) j + ( a 1 b 2 − a 2 b 1 ) k = ∣ i j k a 1 a 2 a 3 b 1 b 2 b 3 ∣ {\begin{aligned}\mathbf {a} \times \mathbf {b} &=(a_{2}b_{3}-a_{3}b_{2})\mathbf {i} +(a_{3}b_{1}-a_{1}b_{3})\mathbf {j} +(a_{1}b_{2}-a_{2}b_{1})\mathbf {k} \\&={\begin{vmatrix}\mathbf {i} &\mathbf {j} &\mathbf {k} \\a_{1}&a_{2}&a_{3}\\b_{1}&b_{2}&b_{3}\\\end{vmatrix}}\end{aligned}} a×b=(a2b3a3b2)i+(a3b1a1b3)j+(a1b2a2b1)k=ia1b1ja2b2ka3b3

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Yongqiang Cheng

梦想不是浮躁,而是沉淀和积累。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值