Large Language Model (LLM) model size, parameter size and parameter count

The model size is the number of parameters in the Large Language Model (LLM).

An LLM has 70B parameters, it means that the model has 70 billion adjustable parameters.

1. Model Size and Memory Usage

The total memory usage of the model:
memory usage (in bytes) = number of parameters × \times × size of each parameter

Number of parameters1 B
32-bit precision1 × \times × 1,000,000,000 × \times × 4 byte = 4,000,000,000 / 1024 / 1024 / 1024 = 3.7253 GByte
16-bit precision1 × \times × 1,000,000,000 × \times × 2 byte = 2,000,000,000 / 1024 / 1024 / 1024 = 1.862645 GByte
8-bit precision1 × \times × 1,000,000,000 × \times × 1 byte = 1,000,000,000 / 1024 / 1024 / 1024 = 0.93132 GByte
Number of parameters3 B
32-bit precision3 × \times × 1,000,000,000 × \times × 4 byte = 12,000,000,000 / 1024 / 1024 / 1024 = 11.17587 GByte
16-bit precision3 × \times × 1,000,000,000 × \times × 2 byte = 6,000,000,000 / 1024 / 1024 / 1024 = 5.58794 GByte
8-bit precision3 × \times × 1,000,000,000 × \times × 1 byte = 3,000,000,000 / 1024 / 1024 / 1024 = 2.7939677 GByte
Number of parameters7 B
32-bit precision7 × \times × 1,000,000,000 × \times × 4 byte = 28,000,000,000 / 1024 / 1024 / 1024 = 26.077 GByte
16-bit precision7 × \times × 1,000,000,000 × \times × 2 byte = 14,000,000,000 / 1024 / 1024 / 1024 = 13.038516 GByte
8-bit precision7 × \times × 1,000,000,000 × \times × 1 byte = 7,000,000,000 / 1024 / 1024 / 1024 = 6.519258 GByte

thousand [ˈθaʊznd]

  1. the number 1,000 (千)
  2. a large number

million ['mɪljən]

  1. the number 1,000,000 (百万)
  2. a large number

billion ['bɪljən]

  1. the number 1,000,000,000 (十亿)
  2. a very large number

trillion ['trɪljən]

  1. the number 1,000,000,000,000 (万亿)

2. Hugging Face

2.1. GPT-Neo 2.7B

https://huggingface.co/EleutherAI/gpt-neo-2.7B/blob/main/README.md
https://huggingface.co/EleutherAI/gpt-neo-1.3B/blob/main/README.md

GPT-Neo refers to the class of models, while 2.7B represents the number of parameters of this particular pre-trained model.

GPT-Neo refers to the class of models, while 1.3B represents the number of parameters of this particular pre-trained model.

2.2. Massive Text Embedding Benchmark (MTEB) Leaderboard

https://huggingface.co/spaces/mteb/leaderboard

Massive Text Embedding Benchmark
https://huggingface.co/mteb

Model Size (million parameters, in number of parameters)
Memory Usage (GB, fp32)

在这里插入图片描述

2.3. Open LLM Leaderboard

https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard

the number of parameters (B)
#Params (B)

在这里插入图片描述

2.4. LLM-Perf Leaderboard

https://huggingface.co/spaces/optimum/llm-perf-leaderboard

Memory (MB)
Params (B)

在这里插入图片描述

2.5. Open Ko-LLM Leaderboard

https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard

#Params (B)

在这里插入图片描述

References

[1] Yongqiang Cheng, https://yongqiang.blog.csdn.net/
[2] The Big Benchmarks Collection, https://huggingface.co/collections/open-llm-leaderboard/the-big-benchmarks-collection-64faca6335a7fc7d4ffe974a

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Yongqiang Cheng

梦想不是浮躁,而是沉淀和积累。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值