01 何为算法歧视
算法技术的发展固然给社会进步带来巨大贡献,但其技术的复杂性、隐蔽性、动态性同样也导致了算法歧视的出现。相关研究表明,无论是算法程序的设计,还是数据挖掘、数据处理等过程都有可能被悄然嵌入偏见的基因。
最为常见的算法歧视就是大数据杀熟,根据相关调查结果,北京市消费者协会2019年3185份、2021年4186份有效问卷调查中,经历过被大数据杀熟的分别为88.32%、86.91%,其中,网络购物的分别为44.14%、82.44%;在线旅游的分别为39.5%、76.85%;外卖和网约车分别为37.17%、63%。2021年的85.38%被调查者认为大数据杀熟体现为同一时间不同用户购买相同商品或服务的价格不同。
算法歧视还有种族歧视、男女上的性别歧视、价格上的消费歧视、社会中的弱智群体歧视和年龄歧视等。有学者认为,算法偏见不能仅定义为种族、性别、职业身份等偏见,他们指出,“算法偏见”是指算法程序在信息生产和分发过程失去客观中立的立场,影响公众对信息的客观全面认知。因此,还有一种更为隐蔽的算法歧视——连带歧视。正如牛津大学互联网研究院的这项研究表明,广告商正在刻意规避以个体敏感特征(如性别、种族等)将目标受众进行分类,而是以貌似中性的特征将用户分成不同的人群,基于人群的类同性来提供不同的产品、价格与服务。主持该研究的学者桑德拉·瓦赫特将这种以中性特征划分人群所引发的算法歧视称为“连带歧视”。
02 算法歧视的根源
算法歧视的造成也可大致分为三类:一是算法设计者有意或无意将个人偏见植入算法系统所引起的;二是算法学习过程中的数据偏差多引起的;三是外部因素干扰算法运行所引起的。第一,算法系统是由商业公司等第三方主体所研发的,由于设计者文化背景、接受教育程度、思维模式和观念等存在不同,其研发的算法系