归一化和相关性的计算

本文介绍了归一化的概念,特别是在量子力学中波函数的归一条件,确保粒子在空间内的概率为1。同时,讨论了简单和复相关系数,用于度量变量间的线性相关性。提供的代码示例展示了如何计算相关系数,适用于数据分析和统计应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.认识归一化

      总结1:归一化是使计量(物理)系数值的绝对值变成某种相对值的相关性办法

      总结2:在以前的本科化学的量子学里,表达粒子量子态波函数必须满足归一条件,也就是说,在空间内找到粒子的概率必须等于1。这性质称为归一性。

      总结3:波函数是一个复函数。 概率密度是一个实函数,空间内积分和为1,称为概率密度函数。所以在区域内,找到粒子的概率是1。

       总结4:假若,从解析薛定谔方程而得到的波函数,其概率是有限的,但不等于1,则可以将波函数乘以一个常数,使概率等于1。或者假若波函数内,已经有一个任意常数,可以设定这任意常数的值,使概率等于1

                                                              来源:图一:百度百科:

 其中:

 普朗克常数,又称合理化普朗克常数,是角动量的最小衡量单位。(念做h拔或者h bar)

ℏ(ћ)=h/(2π)

由于计算角动量时要常用到h/2π这个数,为避免反复写 2π 这个数,因此引用另一个常用的量为约化普朗克常数(reduced Planck constant),有时称为狄拉克常数(Dirac constant),纪念保罗·狄拉克

=h/(2π)

约化普朗克常量(又称合理化普朗克常量)是角动量的最小衡量单位。

其中 π 为圆周率常数,约等于3.14,(这个h上有一条斜杠)念为 "h拔" 。

二、相关性

简单相关系数:又叫相关系数或线性相关系数,一般用字母r表示,用来度量两个变量间的线性关系。

定义式 [1] 

 

其中,Cov(X,Y)为X与Y的协方差,Var[X]为X的方差,Var[Y]为Y的方差

复相关系数:又叫多重相关系数。复相关是指因变量与多个自变量之间的相关关系。例如,某种商品的季节性需求量与其价格水平、职工收入水平等现象之间呈现复相关关系。

三、设计相关性函数

    public static final double correlation(double[] y1, double[] y2, int n) {
        double av1 = 0.0D;
        double av2 = 0.0D;
        double y11 = 0.0D;
        double y22 = 0.0D;
        double y12 = 0.0D;
        if (n <= 1) {
            return 1.0D;
        } else {
            int i;
            for(i = 0; i < n; ++i) {
                av1 += y1[i];
                av2 += y2[i];
            }

            av1 /= (double)n;
            av2 /= (double)n;

            for(i = 0; i < n; ++i) {
                y11 += (y1[i] - av1) * (y1[i] - av1);
                y22 += (y2[i] - av2) * (y2[i] - av2);
                y12 += (y1[i] - av1) * (y2[i] - av2);
            }

            double c;
            if (y11 * y22 == 0.0D) {
                c = 1.0D;
            } else {
                c = y12 / Math.sqrt(Math.abs(y11 * y22));
            }

            return c;
        }
    }

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值