真实案例分享,Augment Code和Cursor那个比较好用?

你有没有遇到过这种情况?明明知道自己想要什么,写出来的提示词却让AI完全理解错了。

让AI翻译一篇文章,结果生成的中文不伦不类,机器僵硬,词汇不同,鸡同鸭讲。中国人看不懂,美国人表示耸肩。就像你想说"帮我做个登录页面",结果AI给你做了个“注册页面“。

Augment Code的Prompt Enhancer 就是为了解决这个痛点而生的。它会从你的代码库里找到相关信息,把你那些模糊的想法重新组织成清晰明确的指令。更棒的是,如果它理解错了什么,你可以在发送之前直接修改。

为什么要做这个功能

Augment Code经常和开发者聊天,他们发现了一个很有意思的现象:提示词写得好不好,直接决定了AI能不能帮你把事情做对。想想也是,AI编程助手才出现不到一年,每天都有无数开发者第一次尝试和它们合作。

我们希望每个人都能体验到那种"哇,太神奇了"的时刻——就是AI第一次就完美理解你的意思,把任务完成得漂漂亮亮。

除了让人开心,好的提示词还能省钱省时间。少了那些无效的来回沟通,计算成本降下来了,你也能更快拿到想要的结果。

时间效果怎么样,不要听他们怎么吹,看看实际效果。

测试1翻译场景:拒绝机器翻译的僵硬

看英文技术文档,很多时候需要翻译成中文。各个翻译软件比如谷歌,豆包,翻译的都是不伦不类。每次我翻译的时候,习惯丢给大模型”下载当前网页,翻译成中文,保存markdown文件”。翻译重来的只能当半成品,总比一个一个查找不认识的词汇强。

无意之间使用了Enhance Prompt,效果简直上天了,知道我想要啥。

你只需要输入一个很简单的想法:点击那个闪亮的 ✨ 按钮,马上就能得到一个结构清晰、信息完整的提示词:

  • 自动找到相关代码 — 不用你到处复制粘贴了。Prompt Enhancer 会利用 Augment 强大的代码理解能力,自动把相关的上下文信息整理好。

  • 让AI的想法透明化 — 你能清楚看到AI是怎么理解你的需求的,发现问题可以立刻修正。

  • 提升回答质量 — 详细准确的提示词意味着更好的结果,更少的修改。

比如自然流畅的中文表达,使用原文的层级结构,遇到专业术语,可在首次出现的时候提供英文原文对照。这些都不用我敲打。我写了一句话,它按照我的意思生成了10句话,句句都是我想要的。

测试2:生成一个俄罗斯方块

苍天可鉴,我真的只是输入了这么一句话:

"生成一个精美的俄罗斯方块游戏,html运行"

让Augment Code嘚啵嘚啵,给我吐出来一段话

请创建一个完整的俄罗斯方块游戏,要求如下:
**技术要求:**
- 使用HTML、CSS和JavaScript实现
- 创建单个HTML文件,包含所有必要的样式和脚本
- 确保游戏可以直接在浏览器中打开运行,无需额外依赖
**游戏功能:**
- 实现经典的俄罗斯方块游戏机制(7种标准方块形状:I、O、T、S、Z、J、L)
- 方块自动下落,玩家可以控制方块的左右移动、旋转和快速下落
- 当一行完全填满时自动消除并计分
- 显示当前分数和游戏状态
- 游戏结束检测(当方块堆积到顶部时)
**操作控制:**
- 左右箭头键:移动方块
- 上箭头键或空格键:旋转方块
- 下箭头键:加速下落
- 暂停/开始功能
**视觉设计:**
- 精美的界面设计,包含游戏区域边框和背景
- 不同颜色区分不同形状的方块
- 显示下一个即将出现的方块
- 响应式设计,适配不同屏幕尺寸
**用户体验:**
- 流畅的动画效果
- 适中的游戏难度递增
- 清晰的游戏说明和控制提示
请创建完整的HTML文件,确保代码结构清晰,注释完整,便于理解和维护。

Augment Code怎么这么牛,比我自己都知道我想要啥,它怎么知道精美这个词是什么意思?

实际效果那?吊打所有的AI native IDE。我自己就是模仿(抄袭)Cursor,做IDE太难了,Cursor都没有抄明白,Augment Code又是一个翻不过去的喜马拉雅山。国内的字节Trae,通义灵码,百度CoMate加油哦!

Augment Code 为什么那么强,我该怎么超越他!

Cursor 的竞争对手 Augment Code 发布了 Augment Agent,专为大型代码库打造,具备 20 万 tokens 的超长上下文、持久记忆和深度工具集成。不过产品形态却不是一个全新的 IDE,而是作为 IDE 的插件,同时支持 VS Code、JetBrains、Vim 等主流 IDE。因为工作原因需要经常使用,目前安装了Cursor, githubcopilot,augment code,字节trae等5个应用。其实是想投机取巧,A生成效果不好,可以用B实施吧。现在我准备全面用户Augment,卸载Curosr。每个月50美元的会员费,实际效果远超我想想。

一方面不像Roo code或Cline需要自己配置API Key,先白嫖 14天免费试用。另一方面这个代码质量真得有点超预期。Cursor/github copilot没搞定的需求,同样的Prompt发过去,这个软件搞定了。

背后都是Claude sonnet4+o1,为啥人家调教的这么好呢?!即使Cursor引以为傲的Codebase,也没Augment强。

安装和使用很简单,用户直接在Vs code/JetBrains插件市场就能搜索到Augment。每月500次请求,建议安装上mcp-feedback-enhanced,据说可以增加使用次数。

最后总结一下,Prompt工程是术,网络铺天盖地教大家写prompt,那些精美绝伦的prompt例子,其实是术,当模型能力能力更新的时候,其实很多prompt都过期了。但是我们和AI交流的原则,讲清楚你真的想要什么,是道。跟AI交流的时候,充分表达自己的需求,而不是让AI去猜用户的意图;或者AI帮你写了Prompt,让你在修改,看看全面性和准确性,是不是真正你想要的。话说对了,事情就成功了一半,剩下的交给AI去完成。

### 如何在软件开发中增强代码 在软件开发过程中,“增强代码”通常指的是通过改进现有代码的功能、性能或可维护性来提升其质量。这可以通过多种方式实现,包括但不限于引入新的技术、优化算法、重构代码以及利用数据增强技术。 #### 数据增强技术的应用 如果目标是通过增加训练数据的多样性来提高模型的表现,则可以借鉴图像处理中的数据增强方法[^2]。尽管这种方法主要用于机器学习领域,但在某些情况下也可以扩展到其他类型的输入数据上。例如,在自然语言处理(NLP)项目中,可以通过同义词替换、句子重组等方式生成更多的样本来扩充语料库。 #### 系统架构层面考虑 从更广泛的视角来看,当讨论如何增强代码时,还需要考虑到系统的整体设计——即系统架构的作用不可忽视[^3]。合理的系统架构能够使得未来的修改更加容易实施;它定义了各个组成部分之间的关系及其相互作用模式。具体来说: - **模块结构**决定了哪些部分应该作为独立单元存在并可能被重用。 - **构件连接器结构**描述了这些部件之间是如何协作完成任务的。 - **分配结构**则进一步明确了资源分布情况,这对于分布式应用尤为重要。 因此,在规划任何有关增强代码的工作之前,先审视当前项目的体系框架是非常必要的。 #### 类比理解AOP概念下的代码增强 面向切面编程(Aspect-Oriented Programming,AOP)提供了一种机制用于分离横切关注点(cross-cutting concerns),从而简化复杂度较高的程序逻辑[^4]。通过这种方式,可以在不改变原有业务流程的前提下向其中注入额外的行为特性—这种操作实际上也是一种形式上的“代码增强”。 下面给出一段简单的Python示例演示如何使用装饰器(decorator pattern)来进行基本的日志记录功能添加,这是AOP思想的一个简单体现: ```python def log_decorator(func): def wrapper(*args, **kwargs): print(f"Calling function '{func.__name__}' with arguments {args} and keyword arguments {kwargs}") result = func(*args, **kwargs) print(f"Function '{func.__name__}' returned {result}") return result return wrapper @log_decorator def add(a, b): return a + b add(5, 7) ``` 上述例子展示了如何无需改动`add()`函数本身即可为其增添日志打印能力。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小橘子就是小橘子

您的鼓励,让您终身受益!!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值